Geoecological analysis of impacts of the use of plastic waste in road construction on the geological environment


Keywords: polymer waste, migration of microplastics, heavy metals, environmental criterion

Abstract

Currently, society and industry are developing at a rapid pace, and an increas- ingly serious problem of the modern world is environmental pollution, requiring recycling and reuse wastes. Modern technologies in the field of road construction involve the use of polymeric materials obtained from waste recycling. Almost nothing is known about soil contamination by plastic in general and the destruction of roads in particular; probably because of lack of awareness and absence of standard methods for quantifying plastic components in soil. The contemporary data suggest that flow of plastic has already reached a value similar to that found for other contaminants, such as heavy metals. In particular, migration is observed for plastic microparticles, but so far, their effect on groundwater has not been studied. Therefore, additional research is urgently needed to shed more light on the fate and impact of these persistent materials in the terrestrial environment. The purpose of the study was a geoecological analysis of the risks of using polymer waste in construction of roads to the geological environment. To ensure environmental safety in the implementation of technologies for the utilization of polymer waste, it is necessary to take into account their chemical composition, the ability to form hazardous products in increasing temperature, hazard class, physical and chemical properties. We propose criteria for assessing the possibility of recycling polymer waste in road construction, namely for the manufacture of asphalt concrete. According to the pro- posed overall criterion, taking into account not only technical and economic indicators, but also the environmental component, we can recommend the use of HDPE and LDPE, as well as PP for use in road construction. Taking into account the total criterion, we recom- mend using HDPE, LDPE as the most acceptable waste for road construction,, as well as PP. The technological scheme should include the collection, sorting of these plastics, as those that do not contain hazardous chemicals. Temperature conditions for manufacturing asphalt involve heating and converting the components into the liquid phase for uniform mixing of the entire composite. Under those temperature conditions, chemical compounds that are harmful to the environment and humans would not be created. The possibility to substitute part of the bitumen, to obtain asphalt concrete with high performance, increased service life shows the cost-effectiveness of using these groups of polymer waste in the technology of manufacturing asphalt concrete. The lack of regulatory framework and technical standards for working with polymers for paving brings the problem of plastic roads to the legislative level.

Author Biographies

Olena V. Kraynyuk
Kharkov National Automobile and Highway University, Kharkiv, Ukraine
Yuriy V. Buts
Simon Kuznets Kharkiv National University of Economics, Kharkiv, Ukraine
Roman V. Ponomarenko
National University of Civil Defense of Ukraine, Kharkiv, Ukraine
Pavlo I. Lotsman
H.S. Skovoroda Kharkiv National Pedagogical University, Kharkiv, Ukraine
Vitalii V. Asotskyi
National University of Civil Defense of Ukraine, Kharkiv, Ukraine
Eleonora A. Darmofal
Kharkiv State Academy of Physical Culture, Kharkiv, Ukraine

References

1. Andruhova, T. V., Krutskih, A.A. Sposob polucheniya poli- merasfaltobetonnoy smesi: [Method of obtaining polymer asphalt concrete mixture] RU 2737926 C1: МПК C04B 26/26 (2006.01), C08L 95/00 (2006.01), C04B 111/20 (2006.01) patentee Altai State University. – No 2020101870; publ. 04.12.2020, 34. 13.
2. Belotserkovskaya, O.S. (2021) Stroitelstvo dorog iz pererabotannyih othodov [Belotserkovskaya O.S. Con- struction of roads from recycled waste] Industrial Russia: yesterday, today, tomorrow. 66-71. (In Russian)
3. Blasing, M., Amelung, W. (2018) Plastics in soil: Ana- lytical methods and possible sources. Sci. Total Environ. V. 612. P. 422–435. DOI:10.1016/J.SCITO- TENV.2017.08.086
4. Blasing, M., Amelung, W. (2018) Plastics in soil: analytical methods and possible sources, Sci. Total Environ. 612. 422-435.
5. Buts, Y., Asotskyi, V., Kraynyuk, O., Ponomarenko, R., Kovalev, P. (2019) Dynamics of migration property of some heavy metals in soils in Kharkiv region under the influence of the pyrogenic factor Journ. Geol. Geograph. Geoecology, 28(3), 409-416. DOI: 10.15421/111938.
6. Buts, Y., Kraynyuk, O., Asotskyi, V., Ponomarenko, R., Kalynovskyi, A. (2020) Geoecological analysis of the impact of anthropogenic factors on outbreak of emergencies and their prediction. Journal of Ge- ology, Geography and Geoecology, 29(1), 40-48. DOI:10.15421/112004
7. Chae, Y., An, Y.J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review, Environ. Pollut. 240. 387–395.
8. Chai, B., Li, X., Liu, H., Lu, G., Dang, Z., Yin, H. (2020) Bacterial communities on soil microplastic at Guiyu, an E-Waste dismantling zone of China. Ecotoxicology and Environmental Safety. 195. 110521. DOI: 10.1016/j.ecoenv.2020.110521
9. Conlon, K. (2021) Plastic roads: not all they’re paved up to be. International Journal of Sustainable Development & World Ecology, 1–4. DOI:10.1080/13504509.2021. 1915406
10. De Souza Machado, A.A., Kloas, W., Zarfl, C., Hempel, S., Rillig, M.C. (2017) Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 24 (4), 1405-1416.
11. Dowarah, K., Patchaiyappan, A., Thirunavuk-Karasu, C., Jayakumar, S., Devipriya, S.P. (2020) Quantification of microplastics using Nile Red in two bivalve species Perna viridis and Meretrix meretrix from three estuaries in Pondicherry, India and microplastic uptake by local communities through bivalve diet. Marine Pol- lution Bulletin. 153. 110982. DOI: 10.1016/j.marpol- bul.2020.110982.
12. Gaylor, M.O., Harvey, E., Hale, R.C. (2013) Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta–BDE–amended soils, Environ. Sci. Technol. 47. 13831–13839.
13. Geyer, R., Jambeck, J. R., Law, K. L. (2017) Production, use, and fate of all plastics ever made. Science advanc- es. 3, DOI:10.1126/sciadv.1700782
14. Gritsenko, Yu.B. (2016) Soderzhannia bitumiv i bitumnykh emulsii, modyfikovanykh inden-kumaronovymy smol- amy. [Contents of bitumens and bitumen emulsions modified by indene-coumarone resins]. dis. Cand. technical sciences. 154. (In Ukrainian).
15. Hodson, M.E., Duffus-Hodson, C.A., Clark, A. (2017) Plastic bag derived-microplastics as a vector for met- al exposure in terrestrial invertebrates Environmental Science & Technology. 51(8). P. 4714-4721. DOI: 10.1021/acs.est.7b00635.
16. Horton, A.A. Walton, A., Spurgeon, D.J., Lahive, E., Svendsen, C. (2017) Microplastics in freshwater and terrestrial environments: evaluating the current un- derstanding to identify the knowledge gaps and future research priorities. Science of the Total Environment. 586. 127-141. DOI: 10.1016/j.scitotenv.2017.01.190.
17. Horton, AA, Svendsen, C, Williams, R.J, Spurgeon, D.J., Lahive, E. (2017) Large microplastic particles in sediments of tributaries of the river thames, uk – abun- dance, sources and methods for effective quantifica- tion. Marine Pollution Bulletin 114:218-226.
18. Kim, L.-H., Kang, J., Kayhanian, M., Gil, K.-I., Stenstrom, M.K., Zoh, K.-D. (2006) Characteristics of litter waste in highway storm runoff. Water Sci. Technol. 2:225– 234. DOI:10.2166/wst.2006.056.
19. Krainiuk, E. V. (2004) Stroitel’stvo avtomobil’nyh dorog pri bezopasnom ispol’zovanii fosfogipsa i zoloshla- kov TJeS [Construction of highways with the safe use of phosphogypsum and ash and slag from TPPs] dis. Cand. technical sciences. 190. (in Russian).
20. Krainiuk, O., Buts, Y., Ponomarenko, R., Asotskyi, V., & Kovalev, P. (2021) The geoecological analysis per- formed for the geochemical composition of ash and slag waste obtained at Zmiiv thermal power plant. Journal of Geology, Geography and Geoecology, 30(2), 298-305. DOI:10.15421/112126
21. Lu, X.M., Lu, P.Z., Liu, X.P. (2020) Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil. Science of the Total Environment. 709. 136276. DOI: 10.1016/j. scitotenv.2019.136276
22. Lukashevich, O.D., Frolova, E.A., Lukashevich, V.N. (2020) Ekologicheskie innovatsii dorozhnogo stroi- telstva v kontekste resheniya globalnyih ekologich- eskih problem. [Environmental innovations of road construction in the context of solving global environ- mental problems]. Chemistry. Ecology. Urban studies. 2020-1. 142-146. (In Russian).
23. Lukashevich, V.N., Lukashevich, O.D., Lyulevich, Yan. S. (2020) Sovremennyie podhodyi k razrabotke sposobov utilizatsii polimernyih othodov v dorozhnom stroitel- stve [Modern approaches to the development of methods for recycling polymer waste for road construction] Investitsii, stroitelstvo, nedvizhimost kak drayveryi sotsialno-ekonomicheskogo razvitiya territorii i povyisheniya kachestva zhizni naseleniya. [Investments, construction, real estate as drivers of socio-economic development of the territory and improving the quality of life of the population]. Materials of the X International Scientific and Practical Conference. In 2 parts. 430-432. (In Russian).
24. Lwanga, E. H., Vega, J. M., Quej, V.К., Chi J.L., L. San- chez, Del Cid, Chi, C.G. (2017) Escalona Segura, H. Gertsen, T. Salanki, M. van der Ploeg, A.A. Koelmans, V. Geissen. Field evidence for transfer of plastic debris along a terrestrial food chain, Sci. Rep. 7. 14071.
25. Lwanga, H.E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., Ploeg, M., Besseling, E., Koelmans, A.A., Geissen, V. (2016) Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae), Environ. Sci. Technol. 50. 2685–2691.
26. Lysyannikov, A.V., Tretyakova, E.A., Lysyannikova, N.N. (2017) Pererabotannyiy plastik v dorozhnom stroitel- stve [Recycled plastic in road construction]. Bulletin of TulSU. Engineering Science, 7, 105-117. (In Russian)
27. MacRebur. The Plastic Road Company (2020) Technical Data Leaching of MR modified asphalt. https://macreMason, S.A., Welch, V.G., Neratko, J. (2018) Synthetic polymer contamination in bottled water. Frontiers in Chemistry. 6(407). DOI: 10.3389/fchem.2018.00407
28. Masood, S., Duggal, E. A. K., Masoodi, E. S., Rather, E. G. M. (2021) Evaluating structural integrity of plastic roads & their cost comparision with bituminous pave- ments.
29. Mir, A. H. (2015) Use of plastic waste in pavement con- struction: an example of creative waste management. J Eng, 5(2), 57-67.bur.com/pdfs/product/Leaching.pdf
30. Moldakhmetova, A.N., Elubay, M.A. (2021) Primene- nie tverdyih byitovyih othodov polietilentereftalata v dorozhnom stroitelstve [The use of solid household waste polyethylene terephthalate in road construction] Science and technology of Kazakhstan. 1. 49-55. (In Russian)
31. Moskovets, A.V. (2016) Ispolzovanie trudnoutiliziruemyih othodov neftehimicheskoy promyishlennosti v proizvodstve ekologicheski bezopasnyih stroitelnyih materialov [The use of hard-to-use waste from the petrochemical industry in the production of environmen- tally friendly building materials]. dis. Cand. technical sciences, 180 (In Russian)
32. Nekhin, M. Yu., Shakhnovich, I. V. (2021) Mikroplas- tiki: novaya globalnaya ugroza? [Microplastics: A New Global Threat?] Laboratory and produc- tion. No2/2021 (17), 20-31. DOI: 10.32757/2619- 0923.2021.2.17.20.31. (In Russian)
33. Nomura, T., Tani, S., Yamamoto, M., Nakagawa, T., Toyo- da, S., Fujisawa, E., Konishi, Y. (2016) Cytotoxicity and colloidal behavior of polystyrene latex nanopar- ticles toward filamentous fungi in isotonic solutions, Chemosphere. 149. 84–90.
34. Provatorova, G.V. (2021) Ekologicheskie aspektyi mod- ifikatsii bituma. Umnyie kompozityi v stroitelstve [Environmental aspects of bitumen modification]. Smart composites in construction. 2. 1. 47-52 DOI: 10.52957/27821919_2021_1_47 (In Russian)
35. Pugina, V.K., Rudakova, L.V. (2021) Kriterii vyibora grupp polimernyih othodov dlya ispolzovaniya v kachestve syirevogo komponenta v proizvodstve asfaltobetona [Criteria for the selection of groups of polymer waste for use as a raw component in the production of as- phalt concrete] Chemistry. Ecology. Urbanism, 38-42. (In Russian)
36. Ragusa, A. (2021) Plasticenta: first evidence of microplas- tics in human placenta. Environment International. 146. DOI: 10.1016/j.envint.2020.106274
37. Ryan, P. G. (2015) A Brief History of Marine Litter Re- search. In: M. Bergmann, L. Gutow and M. Klages (eds.). Marine Anthropogenic Litter. Cham, Switzer- land, Springer International Publishing. 1-25. DOI: 10.1007/978-3-319-16510- 3_1.
38. Ryberg, M.W., Hauschild, M.Z., Wang, F., Averous-Mon- nery, S., Laurent, A. (2019) Global environmental losses of plastics across their value chains. Resources, Conservation and Recycling. 151.
39. Ryberg, M.W., Laurent, A., Hauschild, M. U. Environment (2018) Mapping of global plastics value chain and plastics losses to the environment: with a particular fo- cus on marine environment. United Nations Environ- ment Programme. Nairobi, Kenya. 99 p.
40. Schwabl, P. (2019) Detection of various microplastics in human stool. Annals of Internal Medicine. 171 (7). P. 453. DOI: 10.7326/M19-0618
41. Sherrington, C., Darrah, C., Hann, S., Cole, G., Corbin, M. (2016) Study to Support the Development of Measures to Combat a Range of Marine Litter Sources. Eunomia Research & Consulting Ltd, Bristol, United Kingdom.
42. Shubov, L. Ya., Skobelev, K. D., Ivankov, S.I., Doronki- na, I. G. (2019). Tehnologii utilizatsii plastmassovy- ih othodov (chast I) [Technologies for utilization of plastic waste (part I)] Ecological systems and devices. 11. 21-40.
43. Teuten, E.L., Rowland, S.J., Galloway, T.S., Thompson, R.C. (2007) Potential for plastics to transport hydro- phobic contaminants. Environ Sci Technol 41, 7759- 7764.
44. Tolstikhina, E. D., Bryzhaty, D. R., Schmidt, M., Kudusov, A. A., & Kremenskaya, E. A. (2020) Ekonomicheska- ya otsenka primeneniya othodov promyishlennosti v proizvodstve dorozhno-stroitelnyih materialov. [Eco- nomic evaluation of the use of industrial waste in the production of road building materials] Economic Sci- ences, (190), 96-101. (In Russian)
45. Voronova, E.R. (2019) Sovremennaya gigienicheskaya di- agnostika zagryazneniya vodyi i organizma cheloveka mikroplastikom [Modern hygienic diagnostics of contamination of water and human body by microplas- tics]. Bulletin of the Russian Military Medical Acade- my. 1.(S1). 81-87. (In Russian)
Published
2022-09-23
How to Cite
Kraynyuk, O., Buts, Y., Ponomarenko, R., Lotsman, P., Asotskyi, V., & Darmofal, E. (2022). Geoecological analysis of impacts of the use of plastic waste in road construction on the geological environment. Journal of Geology, Geography and Geoecology, 31(3), 493-503. https://doi.org/https://doi.org/10.15421/112245