Classification of Soil Quality Index in Irrigated Paddy Fields: Study in Jember, East Java, Indonesia


  • Indarto Indarto
  • Marga Mandala
  • Bowo Eko Cahyono
Keywords: soil degradation, soil quality index, mapping, irrigated paddy

Abstract

Irrigated paddy fields occupy an area of 1,071.47 km2, about one third of the whole administrative region of Jember. Rice is the principal food consumed by the Indone- sian people. Paddy fields play a vital role in rice food chain production. However, intensive paddy rice cultivation tends to use more input (including fertilizer and pesticides). It is widely accepted that these intensive agricultural practices degrade the soil quality and decrease the farmer’s income. Therefore, soil quality should be prioritized in land resources management. This study aims to assess the soil quality index (SQI) of irrigated paddy fields’ in Jember Regency, East Java, Indonesia. The research procedure consists of (1) determination of land unit, (2) soil sampling, (3) laboratory analysis, (4) principal component analysis (PCA), (5) assessment of soil quality index (SQI), and (6) interpolation. In this case, the PCA selects the most representative leading indicators. The PCA results in the form of a minimum data set (MDS) will reduce the indicator load in the SQI calculation model and avoid data redundancy. Moreover, the Inverse Distance Weighted (IDW) methodinterpolates the data points and forms a classified SQI map. This method predicts the value by considering the distance between the data point and the predicted location. Three main components, i.e., total P, silt fraction, and clay fraction, are the most determinant factors of soil quality in this study. The results showed that about 68,887.65 ha (61.32 %) of irrigated paddy fields was of very low quality, and 39,948.22 ha (35.56 %) was low quality. Meanwhile, only 3,513.83 ha (0.03 %) is in the medium category. Therefore, an effort to maintain the soil quality in paddy fields should be prioritized to guarantee the sustainability of agricultural practices. Soil quality improvement should focus on increasing soil fertility and phosphorus availability.

Author Biographies

Indarto Indarto
University of Jember Jl. Kalimantan, Jawa Timur, Indonesia
Marga Mandala
University of Jember Jl. Kalimantan, Jawa Timur, Indonesia
Bowo Eko Cahyono
University of Jember Jl. Kalimantan, Jawa Timur, Indonesia

References

1. Arianti, I., Soemarno, Hasyim, A. W., & R. (2018). Rainfall Estimation Using Thiessen Polygons, Inverse Distance weighted, Spline, and Kriging Methods: A Case Study in Pontianak, West Kalimantan. International Journal of Education and Research, 6(11), 301–310.
2. Arunrat, N., Kongsurakan, P., Sereenonchai, S., & Hatano, R. (2020). Soil organic carbon in sandy paddy fields of Northeast Thailand: A review. Agronomy, 10(8). https://doi.org/10.3390/agronomy10081061
3. Baghdadi, A., Halim, R. A., Ghasemzadeh, A., Ramlan, M. F., & Sakimin, S. Z. (2018). Impact of organic and inorganic fertilizers on the yield and quality of silage corn intercropped with soybean. PeerJ, 6(10), 1–26. https://doi.org/10.7717/peerj.5280
4. Bedolla-Rivera, H. I., Negrete-Rodríguez, M. de la L. X., Medina-Herrera, M. D. R., Gámez-Vázquez, F. P., Álvarez-Bernal, D., Samaniego-Hernández, M., Gá- mez-Vázquez, A. J., & Conde-Barajas, E. (2020). De- velopment of a soil quality index for soils under dif- ferent agricultural management conditions in the cen- tral lowlands of Mexico: Physicochemical, biologi- cal and ecophysiological indicators. Sustainability (Switzerland), 12(22), 1–24. https://doi.org/10.3390/ su12229754
5. BIG. (2019). Indonesia Geospatial Portal. http://tanahair. indonesia.go.id/portal-web
6. BIG. (2020). DEMNAS. Website. http://tides.big.go.id/ DEMNAS/#Info
7. Boser, B. E., Vapnik, V. N., & Guyon, I. M. (1992). Train- ing Algorithm Margin for Optimal Classifiers. Percep- tion, 144–152.
8. Edrisi, S. ., Tripathi, V., & P.C, A. (2019). Performance Analysis and Soil Quality Indexing for Dalbergia sis- soo Roxb. Grown in marginal and Degraded Land of eastern Uttar Pradesh, India. Land, 8(63), 1–19.
9. Farooque, A. A., Abbas, F., Zaman, Q. U., Madani, A., Percival, D. C., & Arshad, M. (2012). Soil nutrient availability, plant nutrient uptake, and wild blueberry (Vaccinium angustifolium Ait.) yield in response to N-viro biosolids and irrigation applications. Applied and Environmental Soil Science, 1(1), 1–8. https://doi. org/10.1155/2012/638984
10. Fesyuk, V. O., Moroz, I. A., Kirchuk, R. V., Polianskyi, S. V., & Fedoniuk, M. A. (2021). Soil degradation in Volyn region: current state, dynamics, ways of reduc- tion. Journal of Geology, Geography, and Geoecology, 30(2), 239–249. https://doi.org/10.15421/112121
11. Flenniken, J. M., Stuglik, S., & Iannone, B. V. (2020). Quantum GIS (QGIS): An introduction to a free alter- native to more costly GIS platforms. Edis, 2020(2), 7. https://doi.org/10.32473/edis-fr428-2020
12. Ghimire, P., Bhatta, B., Pokhrel, B., & Shrestha, I. (2018). Assessment of soil quality for different land uses in the Chure region of Central Nepal. Journal of Agriculture and Natural Resources, 1(1), 32–42. https://doi. org/10.3126/janr.v1i1.22220
13. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Re- mote Sensing of Environment, 202, 18–27. https://doi. org/10.1016/j.rse.2017.06.031
14. Lantoi, R. R., Darman, S., & Patadungan, Y. S. (2016). Identifikasi Kualitas Tanah Sawah Pada Beberapaloka- si Di Lembah Palu Dengan Metode Skoring Lowery. Journal Agroland, 23(3), 243–250. http://jurnal.untad. ac.id/jurnal/index.php/AGROLAND/article/view- File/8323/6604
15. Mahmood, F., Imran Khan, Umair Ashraf, T. S., Hussain1, S., Shahid, M., Abid, M., & Ullah, S. (2017). Effects of organic and inorganic manures on maize and their residual impact on soil Physico-chemical properties. Journal of Soil Science and Plant Nutrition, 17(1), 22–32. http://www.scielo.cl/scielo.php?script=sci_art- text&pid=S0718-95162017005000002&lng=en&n- rm=iso&tlng=en
16. Natural Resources Conservation Service. (1999). Soil Tax- onomy. In United States Department of Agriculture. https://doi.org/10.1007/BF01574372
17. Nepal, S., & Asheshwar, R. (2018). Soil Quality Index and Nutrient in Badekhola and Brindaban Catchment, Ne- pal. MOJ Ecology and Environmental Science, 3(1), 43–46. https://doi.org/10.15406/mojes.2018.03.00066
18. Nusantara, R. W., Aspan, A., Alhaddad, A. M., Suryadi, U. E., Makhrawie, Fitria, I., Fakhrudin, J., & Reze- kikasari. (2018). Peat soil quality index and its deter- minants as influenced by land use changes in Kubu Raya district, West Kalimantan, Indonesia. Biodiver- sitas, 19(2), 540–545. https://doi.org/10.13057/bio- div/d190229
19. Prasad, M., Chrysargyris, A., McDaniel, N., Kavanagh, A., Gruda, N. S., & Tzortzakis, N. (2019). Plant nutrient availability and pH of biochars and their fractions, with the possible use as a component in a growing media. Agronomy, 10(1), 1–17. https://doi.org/10.3390/agron- omy10010010
20. Rahman, K. M. A., & Zhang, D. (2018). Effects of fertilizer broadcasting on the excessive use of inorganic fertil- izers and environmental sustainability. Sustainability (Switzerland), 10(3), 1–15. https://doi.org/10.3390/ su10030759
21. Schoonover, J. E., & Crim, J. F. (2015). An Introduction to Soil Concepts and the Role of Soils in Watershed Man- agement. Journal of Contemporary Water Research & Education, 154(1), 21–47. https://doi.org/10.1111/ j.1936-704x.2015.03186.x
22. Shi, Z., Bai, Z., Guo, D., & Chen, M. (2021). Develop a soil quality index to study the results of black locusts on soil quality below different allocation patterns. Land, 10(8), 1–16. https://doi.org/10.3390/land10080785
23. Shokr, M. S., Abdellatif, M. A., El Baroudy, A. A., Elnashar, A., Ali, E. F., Belal, A. A., Attia, W., Ahmed, M., Aldosari, A. A., Szantoi, Z., Jalhoum, M. E. M., & Kheir, A. M. S. (2021). Development of a spatial mod- el for soil quality assessment under arid and semi-arid conditions. Sustainability (Switzerland), 13(5), 1–17. https://doi.org/10.3390/su13052893
24. Supriyadi, S., Sih Dewi, W., Nugrahani, D., Rahmah, A. A., Haryuni, H., & Sumani, S. (2019). The Assessment of Soil Quality Index for Paddy Fields with Indicator Biology in Jatipurno Districts, Wonogirl. Modern Applied Science, 14(1), 20. https://doi.org/10.5539/mas.v14n1p20
25. Szulc, P., Barłóg, P., Ambroży-Deręgowska, K., Mejza, I., Kobus-Cisowska, J., & Ligaj, M. (2020). Effect of phosphorus application technique on effective- ness indices of its use in maize cultivation. Plant, Soil and Environment, 66(10), 500–505. https://doi. org/10.17221/133/2020-PSE
26. Terano, R., Mohamed, Z., Shamsudin, M. N., & Latif, I. A. (2015). Farmers sustainability index: The case of pad- dy farmers in the state of Kelantan, Malaysia. Journal of the International Society for Southeast Asian Agri- cultural Sciences, 21(1), 55–67.
Published
2022-09-22
How to Cite
Indarto, I., Mandala, M., & Cahyono, B. (2022). Classification of Soil Quality Index in Irrigated Paddy Fields: Study in Jember, East Java, Indonesia. Journal of Geology, Geography and Geoecology, 31(3), 460-468. https://doi.org/https://doi.org/10.15421/112242