Use of visual-diagnostic color parameters of soils and optical reflectometry for determination of organic carbon content


Keywords: soil organic carbon, soil color, soil spectral characteristics, regression analysis, NixProTM, Our Sci Reflectometer

Abstract

To get additional tools for the assessment of carbon sequestration, along with the visual assessment of soil coloration with the applying of A. H. Munsell’s atlas, the analysis of color and spectral characteristics of soil using portable colorimeter NixPro and reflectometer Our Sci Reflectometer was carried out in this study. Elemental analysis of soil samples using X-ray fluorescence analysis was performed and the content of organic carbon was estimated. The spectral range of reflected light, which correlates most with the content of organic soil substance, was singled out. Based on the data, received by methods of reflectometry and colorimetry, prognostic regression models were constructed. A multiple linear regression equation with a statistically authentic luminosity predictor (L*) (R2=0.61) was obtained. It allows describing the link between the content of the organic substance in the studied soils and the parameters of the color setting system CIELab, as well as the equation describing 69 % of the data link dispersion between the integrated reflection coefficient and the organic carbon content of the soil. The link between the integral reflection coefficient and the total organic substance content was found. The most correlated spectral range with the content of organic substance – 500–632 nm was singled out. Regression models, which were based exclusively on the spectral data of pre-treated H2O2 soils, increased their predictability by 8–10 %. Approaches that can complement the tools for rapid determination of the organic carbon content in the soil were presented in the work. Researchers are expanding their arsenal of technical support for estimation of color or spectral coefficients of light reflection, based on which it is possible to conduct geospatial analysis and determine the content of the organic substance in low-humus soils with a probability of 69 %.

Author Biographies

Andriy I. Herts
Ternopil National Pedagogical University named after V. Hnatyuk, Ternopil, Ukraine
Volodymyr O. Khomenchuk
Ternopil National Pedagogical University named after V. Hnatyuk, Ternopil, Ukraine
Oleksandr B. Kononchuk
Ternopil National Pedagogical University named after V. Hnatyuk, Ternopil, Ukraine
Nataliia V. Herts
Ternopil National Pedagogical University named after V. Hnatyuk, Ternopil, Ukraine
Viktor S. Markiv
Ternopil National Pedagogical University named after V. Hnatyuk, Ternopil, Ukraine
Andrii О. Buianovskyi
Odesa I.I.Mechnikov National University, Odesa, Ukraine

References

1. Aitkenhead, M., Cameron, C., Choisy B., Coull, M, Black, H., 2018. Digital RGB photography and visible-range spectroscopy for soil composition analysis. Geoderma 313(1):265–275. doi:10.1016/j.geoderma.2017.11.020.
2. Baillie, I.C., 2006. Soil Survey Staff 1999, Soil Taxonomy. Soil Use and Management 17:57–60. doi:10.1111/j.1475–2743.2001.tb00008.x.
3. Bowers, S.A., Hanks, R. J., 1965. Reflection of radiant energy from soils. Soil Sci 100(2):130–138. doi:10.1097/00010694–196508000–00009.
4. Felipe Bachion, de Santana, Aline, M. A. de Souza, Poppi R. J., 2018. Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters. Spectrochim Acta A Mol Biomol Spectrosc 191:454–462. doi:10.1016/j.saa.2017.10.052.
5. Ewing, P.M, TerAvest D., Tu, X., Snapp, S, S., 2021 Accessible, affordable, fine-scale estimates of soil carbon for sustainable management in sub-Saharan Africa. Soil Sci Soc Am J. doi: 10.1002/saj2.20263.
6. Fan, Z, Herrick J. E., Saltzman, R., Matteis, C., Yudina, A., Nocella, N., Crawford, E., Parker R., Van Zee, J., 2017. Measurement of Soil Color: A Comparison Between Smartphone Camera and the Munsell Color Charts. Soil Sci Soc Am J 81:1139–1146. doi:10.2136/ sssaj2017.01.0009.
7. FAO of the United Nations, 2015. World Reference Base for Soil Resources 2014: International Soil Classification Systems for Naming Soils and Creating Legends for Soil Maps – Update 2015. FAO of the United Nations, Rome, Italy. Retrieved from: http://www.fao.org/3/ i3794en/I3794en.pdf. Accessed 24 May 2021.
8. Fu, Y., Taneja, P., Lin, S., Ji, W., Adamchuk, V., Daggupati, P., Biswas, A., 2020. Predicting soil organic matter from cellular phone images under varying soil moisture. Geoderma 361:114020. doi:10.1016/j. geoderma.2019.114020.
9. Kagiliery, J/, Chakraborty, S., Acree, A., Weindorf, D.C., Brevik, E., Jelinski, N., Li, B., Jor-dan, C., 2019. Rapid quantification of lignite sulfur content: Combining optical and X-ray approaches. Int J Coal Geol 216:103336. doi:10.1016/j.coal.2019.103336.
10. Karavanova, E.I., 2003. Opticheskie svoystva pochv i ih priroda [Optical soils properties and their origin]. Moscow State University, Moscow (In Russian).
11. Karavanova, E.N., Orlov, D.S., 1996. Otsenka soderzhaniya gumusa v pochvah po ih spektralnoy otrazhatelnoy sposobnosti [Determination of soil humus content from spectral measurements]. Agrohimiya 1:3–9 (In Russian).
12. Kawamura, K., Tsujimoto, Y., Rabenarivo, M., Asai, H., Andriamananjara, A., Rakotoson, T., 2017. Vis-NIR Spectroscopy and PLS Regression with Waveband Selection for Estimating the Total C and N of Paddy Soils in Madagascar. Remote Sensing 9(10):1081. doi:10.3390/rs9101081.
13. Kirillova, N.P., Grauer-Gray, J., Hartemink, A.E., Sileova, T.M., Artemyeva, Z.S., Burova, E.K., 2018. New perspectives to use Munsell color charts with electronic devices. Comput Electron Agric 155:378–385. doi:10.1016/j.compag.2018.10.028.
14. Lorenz, K., Lal, R., 2014. Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34:443–454. doi:10.1007/s13593–014–0212-y.
15. Marques, K.P.P., Rizzo, R., Dotto, A.C., e Souza, A.B., Mello, FAO., Neto, LGM., dos Anjos, LHC., Demattê, JAM., 2019. How qualitative spectral information can improve soil profile classification? J Near Infrared Spec 27(2):156–174. doi:10.1177/0967033518821965.
16. Mikhailova, E.A., Stiglitz, R.Y., Post, C.J., Schlautman, M.A., Sharp, J.L., Gerard, P.D., 2017, Predicting Soil Organic Carbon and Total Nitrogen in the Russian Chernozem from Depth and Wireless Color Sensor Measurements. Eurasian Soil Sci 50:1414–1419. doi:10.1134/S 106422931713004X.
17. Morgan, CLS., Waiser, T.H., Brown, D.J., Hallmark, C.T., 2009. Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectancen spectroscopy. Geoderma 151(3/4):249–256. doi:10.1016/J.GEODERMA.2009.04.010.
18. Moritsuka, N., Kawamura, K., Tsujimoto, Y., Rabenarivo, M., Andriamananjara, A., Rakotoson, T., Razafimbelo, T., 2019. Comparison of visual and instrumental measurements of soil color with different low-cost colorimeters. Soil Sci. Plant Nutr. 65:605–615. doi:1 0.1080/00380768.2019.1676624.
19. Moritsuka, N., Matsuoka, K., Katsura, K., Sano, S., Yanai, J., 2014. Soil color analysis for statistically estimating total carbon, total nitrogen and active iron contents in Japanese agricultural soils. Soil Sci. Plant Nutr. 60:475– 485. doi:10.1080/00380768.2014.906295.
20. Mouazen, A.M., Karoui, R., Deckers, J., de Baerdemaeker, J., Ramon, H., 2007. Potential of visible and near- infrared spectroscopy to derive colour groups utilising the Munsell soil colour char. Biosyst Eng 97(2):131–143. doi: 10.1016/j.biosystemseng.2007.03.023.
21. Mukhopadhyay, S., Chakraborty, S., 2020. Use of diffuse reflectance spectroscopy and Nix pro color sensor in combination for rapid prediction of soil organic carbon. Comput Electron Agric 176:105630. doi:10.1016/j. compag.2020.105630.
22. Mukhopadhyay, S., Chakraborty, S., Bhadoria, PBS., Li, B., Weindorf, D.C., 2020. Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence spectrometry and NixProTM sensor in landfll soils of India. Geoderma Regional 20: e00249. doi:10.1016/j. geodrs.2019.e00249.
23. Munsell, Color., 2018, Munsell Soil Color Charts: with genuine Munsell® color chips. Munsell Color, Grand Rapids, MI. https://munsell.com/color-products/ color-communications-products/environmental-color- communication/munsell-soil-color-charts/. Accessed 4 May 2021.
24. Orlov, D.S., Sukhanova, N.I., Rozanov, M.S., 2001. Spektralnaya otrazhatelnaya sposobnost pochv i ih komponentov [Spectral reflectivity of soils and their components]. Moscow State University, Moscow. ISBN 5211045319 (In Russian).
25. Our-Sci Web Aplication, 2021. GitLab. https://our-sci.gitlab. io/documentation. Accessed 24 May 2021.
26. Pidlisnyuk, V., Herts., A., Khomenchuk, V., Mamirova, A., Kononchuk, O., Ust’ak, S., 2021. Dynamic of Morphological and Physiological Parameters and Variation of Soil Characteristics during Miscanthus × giganteus Cultivation in the Diesel-Contaminated Land. Agronomy 11(4):798. doi: 10.3390/agronomy11040798.
27. Pidlisnyuk, V.V., Shapoval, P., Zgorelec, Z., Stefanovska, T., Zhukov, O., 2020. Multiyear Phytoremediation and Dynamic of Foliar Metal(Loid)s Concentration during Application of Miscanthus × giganteus Greef et Deu to Polluted Soil from Bakar, Croatia. Environ Sci Pollut Res 27:31446–31457. doi:10.1007/s11356–020–09344–5.
28. Polchina, S.M., 2007. Osnovni typy gruntiv u systemi FAO/ WRB: navch. posibnyk [The main types of soils in the WRB system: a textbook]. Ruta, Chernivtsi, Part 2. (In Ukrainian).
29. Stiglitz, R., Mikhailova, E., Post, C., Schlautman, M., Sharp, J., 2015. Evaluation of an inexpensive sensor to measure soil color. Comput Electron Agric 121:141–148. doi:10.1016/j.compag.2015.11.014.
30. Stiglitz, R., Mikhailova, E., Post, C., Schlautman, M., Sharp, J. 2017, Using an inexpensive color sensor for rapid assessment of soil organic carbon. Geoderma 286:98– 103. doi:10.1016/j.geoderma.2016.10.027.
31. Swetha, R.K., Chakraborty, S. 2021. Combination of soil texture with Nix color sensor can improve soil organic carbon prediction. Geoderma 382:114775. doi:10.1016/j. geoderma.2020.114775.
32. The R Project, 2021. The R Project for Statistical Computing. https://www.r-project.org/. Accessed 17 May 2021.
33. USDA, NRCS, 2014. Keys to Soil Taxonomy. United States Department of Agriculture & Natural Resources Conservation Service, Washington, DC., 12rd edn. Retrieved from: https://www.nrcs. usda.gov/wps/portal/nrcs/detail/soils/survey/class/ taxonomy/?cid=nrcs142p2_053580. Accessed 10 May 2021.
34. Vodyanitskii, Yu, N., Savichev, A.T., 2017. The influence of organic matter on soil color using the regression equations of optical parameters in the system CIE- L*a*b*. Ann. Agric. Sci. 15(3):380–385. doi:10.1016/j. aasci.2017.05.023.
35. Wills, S.A., Burras, C.L., Sandor, J.A., 2007. Prediction of Soil Organic Carbon Content Using Field and Laboratory Measurements of Soil Color. Soil Sci Soc Am J 71:380– 388. doi:10.2136/sssaj2005.0384.
36. Zhu, Y., Weindorf, D.C., Zhang, W., 2011. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. Geoderma 167–168:167–177. doi:10.1016/j. geoderma.2011.08.010.
Published
2022-08-03
How to Cite
Herts, A., Khomenchuk, V., Kononchuk, O., Herts, N., Markiv, V., & Buianovskyi, A. (2022). Use of visual-diagnostic color parameters of soils and optical reflectometry for determination of organic carbon content. Journal of Geology, Geography and Geoecology, 31(2), 260-272. https://doi.org/https://doi.org/10.15421/112224