Intra-annual and long-periodic components in the changes of precipitation over the Antarctic Peninsula and their possible causes

Keywords: atmospheric precipitation, intra-annual distribution, long-period precipitation variability, solar forcing


In order to identify and study the main mechanisms of the formation of atmospheric precipitation, in the article the monthly and annual amounts of precipitation were analyzed from the observations results at Vernadsky, Bellingshausen and Grytviken stations. For the last station, a small linear trend of precipitation increase was detected, while at Vernadsky and Bellingshausen station it is practically absent. At the next stage of the study, the characteristics of intra-annual component of the precipitation variability for these stations were obtained. In the annual course, the component of precipitation variability is represented by 3 peaks – March, July and October (at Bellingshausen station March and July only), with a well-pronounced 4-year periodicity. However, data from Vernadsky station indicates a decrease of the seasonal component in time, at Grytviken station the seasonal component is stable, while at Bellingshausen station is increasing of the seasonal component in time. The analysis of long-period components of the precipitation variability of was carried out on the remains of the data obtained after the analysis of the intra-annual component. For the long-period component of precipitation variability at Vernadsky station, five statistically significant harmonics were obtained, which are reflected in periods of 6.8, 2.4, 4.0, 5.1, and 5.3 years. For Grytviken and Bellingshausen stations, 4 statistically significant harmonics were obtained, the periods of which are 4.2, 0.8, 1.7, 8.9 years and 1.5, 2.0, 2.8, 0.2 years, respectively. Today, the main phases of solar activity are well known, which are about 11 years old. The long-period components of precipitation variability obtained in the work for the stations under consideration (to 10.3, 12 and 34.1 years) are identical (close) to the mentioned phase of solar activity. This allowed the authors to draw preliminary conclusions about the influence of solar activity on the conditions for the formation of precipitation in the region under study. However, direct correlation analysis did not confirm this, as in the case of the El Niño influence.

Author Biographies

Serhii V. Klok
Ukrainian Hydrometeorological Institute, Kyiv
Anatolii O. Kornus
Sumy State Pedagogical University named after A. S. Makarenko, Sumy


1. Averyanov, V.G., 1990. Glyatsio-klimatologiya Antarktidyi [Glacio-climatology of Antarctica]. Gidrometeoizdat, Leningrad: 198 (in Russian).
2. Blattner, P., Cook K., Ulrich L., Dyck T., 1999. Special Edition Using Microsoft Excel 2000. Que Publishing, Indianapolis: 1088.
3. Bogdanova, E.G., Il’in, B.M. & Gavrilova, S.Y., 2007. Sovremennyie metodyi korrektirovki izmerennyih osadkov i rezultatyi ih primeneniya v polyarnyih regionah Rossii i Severnoy Ameriki [Advanced methods for correcting measured precipitation and results of their application in Polar Regions of Russia and North America]. Russian Meteorology and Hydrology 32(4): 229–244. doi: https://doi. org/10.3103/S 1068373907040036 (in Russian).
4. Bromwich, D. H., 1988. Snowfall in High southern latitudes. Reviews of. Geophysics 26(1): 149–168. doi: https://doi. org/10.1029/RG026i001p00149
5. Brooks, C. E. P. & Carruthers N., 1953. Primenenie statisticheskih metodov v meteorologii [Handbook of statistical methods in meteorology]. Meteorological Office, London: 412 p. doi: qj.49707934226 (in Russian).
6. Bryazgin, N. N., 1982. Atmospheric precipitation in Antarctica. Polar Geography and Geology 6(3): 210– 218. doi:
7. Cullather R. I., Bromwich D. H., van Woert M. L. 1996. Interannual variations in Antarctic precipitation related to El-Nino-Southern Oscillation. Journal of Geophysical Research 101(D 14): 19109–19118. doi: https://doi. org/10.1029/96JD 01769
8. Hayhoe. K., Wuebbles D. J., Easterling D. R., Fahey D. W., Doherty S., Kossin J., Sweet W., Vose R. and Wehner M., 2018. Our Changing Climate. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II. U. S. Global Change Research Program, Washington, DC: 72–144. doi: https://doi. org/10.7930/NCA4.2018.CH2
9. Kirchgäßner, A. 2011., An analysis of precipitation data from the Antarctic base Faraday/Vernadsky. International Journal of Climatology 31: 404–414. doi: https://doi. org/10.1002/joc.2083
10. Klok, S.V., 2010. Osoblyvosti vymiriuvannia atmosfernykh opadiv na Ukrainskii antarktychnii stantsii Akademik Vernadskyi [Features of measurement of an atmospheric precipitation at the Ukrainian Antarctic station Academician Vernadsky]. Ukrainian Antarctic Journal 9: 222–230. (in Ukrainian).
11. Klok, S.V., 2013. Rozpodil atmosfernykh opadiv za danymy sposterezhen na Ukrainskii antarktychnii stantsii «Akademik Vernadskyi» [The distribution of precipitation on the observations on Ukrainian Antarctic station Academician Vernadsky]. Hydrology, hydrochemistry and hydroecology. 3(30): 98–104. (in Ukrainian).
12. Lapin, M., Nieplová E., Faško P., 1995. Regional scenarios of temperature and precipitation changes for Slovakia. In National Climate Programme of Slovakia. Bratislava, SHMI and Slovak Ministry of the Environment, 3: 17– 57. (in Slovak).
13. Malcolm S. Y., Tang S. N., Chenoli S., Colwell R., Grant M. S., Law J., Samah A. A., 2018. Precipitation instruments at Rothera Station, Antarctic Peninsula: a comparative study. Polar Research, 37:1, doi: https://doi. org/10.1080/17518369.2018.1503906
14. Mouginot, J., Rignot E., Bjørk A. A., van den Broeke M., Millan R., Morlighem M., Noël B., Scheuchl B., Wood M., 2019. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences 116 (19): 9239–9244. doi:
15. Oceanic Niño Index, 2020. National Oceanic and Atmospheric Administration. Washington. Retrieved from URL: analysis_monitoring/ensostuff/ONI_v5.php
16. Pachauri, R.K., Meyer L. A. (eds.), 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, IPCC: 151.
17. Raveendranathan, D., 2018. Developments Lead to Pollution and Depletion of Natural Resources. Chennai, Notion Press: 228.
18. Rignot, E., Mouginot J., Scheuchl B., van den Broeke M., Millan R., Morlighem M., Noël B., Scheuchl B., Wood M., 2019. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences 116 (4): 1095–1103. doi:
19. Sedunov, Yu.S., Avdyushin S. I., Borisenkov E. P. (eds), 1991. Atmosfera [Atmosphere]. Reference book. Gidrometeoizdat, Leningrad: 512. (in Russian).
20. Shukla, P.R., Skea J., Calvo Buendia E., Masson- Delmotte V., Pörtner H.-O., Roberts D. C., Zhai P., Slade R., Connors S., van Diemen R., Ferrat M., Haughey E., Luz S., Neogi S., Pathak M., Petzold J., Portugal Pereira J., Vyas P., Huntley E., Kissick K., Belkacemi M., Malley J., (eds.), 2019. Climate Change and Land. An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Geneva, IPCC: 874.
21. Stocker, T.F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V. and Midgley P. M. (eds.), 2013. Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 1552.
22. Thomas, R.H., 1963. Studies on the ice cap of Galindez Island, Argentine Islands. British Antarctic Survey Bulletin 2: 27–43.
23. Total sunspot number, 2020. Sunspot Index and Long-term Solar Observations. Brussels: Royal Observatory of Belgium. Retrieved from URL: datafiles
24. Trenberth, K.E., 2011. Changes in precipitation with climate change. Climate Research 47: 123–138. doi: https://doi. org/10.3354/cr00953
25. Turner, J., Barrand N. E., Bracegirdle T. J., Convey P., Hodgson D. A., Jarvis M., Jenkins A., Marshall G., Meredith M. P., Roscoe H., Shanklin J., French J., Goosse H., Guglielmin M., Gutt J., Jacobs S., Kennicutt M. C., Masson-Delmotte V., Mayewski P., Navarro F., Robinson S., Scambos T., Sparrow M., Summerhayes C., Speer K., Klepikov A., 2014. Antarctic climate change and the environment: an update. Polar record 50(3): 237–259. doi: https://doi. org/10.1017/S 0032247413000296
26. Turner, J., Lachlan-Cope T.A., Thomas J. P., Colwell S. R., 1995. The synoptic origins of precipitation over the Antarctic Peninsula. Antarctic Science 7(3): 327–337. doi: 0954102095000447
27. Turner, J., Leonard S., Lachlan-Cope T., Marshall G. J. 1998. Understanding Antarctic Peninsula precipitation distribution and variability using a numerical weather prediction model. Annals of Glaciology 27: 591–596. doi:–1–591–596
28. van Vuuren, D.P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., Hurtt G. C., Kram T., Krey V., Lamarque J.-F., Masui T., Meinshausen M., Nakicenovic N., 2011. The representative concentration pathways: an overview. Climatic Change 109: 5–31. doi:–011–0148-z
29. Velicogna, I., 2009. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters 36: L19503. doi:
How to Cite
Klok, S., & Kornus, A. (2021). Intra-annual and long-periodic components in the changes of precipitation over the Antarctic Peninsula and their possible causes. Journal of Geology, Geography and Geoecology, 30(3), 480-490.