The total content of macronutrients and heavy metals in the soil on devastated lands at Kryvyi Rih Iron Mining & Metallurgical District (Ukraine)


Keywords: soil, devastated lands, waste rock dumps, macronutrients, heavy metals, gross forms, phytotoxicants, phyto-optimization

Abstract

he relevance of the research is due to the need to develop technologies for phytoremediation of the devastated lands in the mining and metallurgical regions of Ukraine and the world. In this regard, the creation of tree plantations adapted to the ecological conditions of such territories is considered by many experts as the most promising option for innovative technologies. However, the development of artificial woodlands requires knowledge of the pedogeochemical characteristics of devastated lands. The aim of the work was to carry out a comparative analysis of the macronutrients and heavy metals gross forms content in the soils of the devastated lands of the Kryvyi Rih mining and metallurgical region. The field studies focused on five contrasting monitoring sites of the Petrovsky dump (Central Kryvorizhzhya), which has a typical age and composition of rocks for the region. Soil sampling, drying, sieving, and sample preparation (sintering in a muffle furnace) were done in accordance with classical techniques. The concentrations of macronutrients (potassium, sodium, calcium, magnesium, sulfur, and phosphorus) and heavy metals (iron, manganese, zinc, copper, lead, and cadmium) were determined using an Inductively Coupled Plasma Mass Spectrometry (ICP- MS) X-Series 2 (Thermo Fisher Scientific, USA). The analytical part of our research was carried out on the basis of the laboratory of the Institute of Biosciences, Freiberg University of Technology and Mining Academy (Freiberg, Germany). At monitoring sites, significant differences were found in the content of macronutrients gross forms, and their variation relative to the control values as well. Potassium and sodium concentrations generally differed slightly or were close to control levels. The results of determining the content of calcium, magnesium and phosphorus indicate a significant deficiency or excess of these macronutrients in the soils of the devastated lands. An increased sulfur content was found in the soils of all monitoring sites, in some cases 4 times higher than the control level. The measured content of gross forms of iron, manganese, copper, cadmium and, partially, zinc in the soils of different monitoring sites exceeded the control values by 5.5 – 5.9 times. Thus, the analysis of the research results made it possible to establish that the soils of the devastated lands of the Petrovsky dump are characterized by unfavorable properties for the growth of most species of woody plants.

Author Biographies

Vasyl M. Savosko
Kryvyi Rih State Pedagogical University, Kryvyi Rih
Yuliia V. Bielyk
Oles Honchar Dnipro National University, Dnipro
Yuriy V. Lykholat
Oles Honchar Dnipro National University, Dnipro
Hermann Heilmeier
Freiberg University of Technology and Mining Academy, Freiberg, Germany
Ivan P. Grygoryuk
National University of Bioresources and Natural Resources Use of Ukraine, Kyiv
Nina O. Khromykh
Oles Honchar Dnipro National University, Dnipro
Tatyana Yu. Lykholat
Oles Honchar Dnipro National University, Dnipro

References

1. Adams, M. B. (ed.), 2017. The forestry reclamation ap- proach: guide to successful reforestation of mined lands. U.S. Department of Agriculture, Forest Service, Northern Research Station. https://doi. org/10.2737/NRS-GTR-169
2. Adriano, D. C., 2001. Trace Elements in the Terrestrial En- vironments. Biogeochemistry. Bioavailability and Risks of Metals. Springer-Verlag.
3. Alekseenko, V. A., 2000. Ekologicheskaya geohimiya [Ecological geochemistry]. Logos. (in Russian)
4. Antoniadisa,V., Levizoua, E., Shaheenb, S. M., Okc, Y. S., Sebastiand, A., Baume, C., Prasadd, M. N. V., Wenzelf, W. W., & Rinklebeg, J., 2017. Trace elements in the soil-plant interface: phytoavail- ability, translocation, and phytoremediation – a review. Earth-Science Reviews, 171, 621-645. https://doi.org/10.1016/j.earscirev.2017.06.005
5. Bielyk, Yu. V., Savosko, V. M., & Lykholat, Yu. V., 2019. Taksonomichnyi sklad ta synantropna kharak- terystyka derevno-chaharnykovykh uhrupovan Petrovskoho vidvalu (Kryvorizhzhia). [Taxonomic composition and synanthropic characteristic of woody plant community on Petrovsky waste rock dumps (Kryvorizhzhya)]. Ekolohichnyi visnyk Kryvorizhzhia [Ecological Bulletin of Kryvyi Rih District], 4, 104–113.
https://doi.org/10.31812/ eco-bulletin-krd.v4i0.2565 (in Ukrainian)
6. Bradl, H. B., 2005. Sources and Origins of Heavy Metals. In H. B. Bradl (ed.) Heavy Metals in the Environment (vol 6, pp. 1-14). Elsevier academic press.
7. Chertko, N. K., & Chertko, E. N., 2008. Geohimiya i ekologiya himicheskih elementov [Geochemis- try and ecology of chemical elements]. Publishing Center of the Belarusian State University. (in Russian)
8. Ding, Y., Mokhberdoran, F., & Xie, Y., 2015. Heavy metal stress and some mechanisms of plant defense response. Scientific World Journal, 2015.
http:// dx.doi.org/10.1155/2015/756120
9. Dobrovolskij, V. V., 2003. Osnovy biogeohimii [Funda- mentals of biogeochemistry]. Academy Publishing Center. (in Russian)
10. Gryshko, V. M., Syshchykov, D. V., Piskova, O. M., Danil- chuk, O. V., & Mashtaler, N. V., 2012. VazhkI metali: nadhodzhennya u grunti, trans lokatsIya u roslinah ta ekologIchna bezpeka. [Heavy metals: entering to soil, translocation in plants and ecological danger]. Donbas. (in Ukrainian)
11. Kabata-Pendias, A., 2011. Trace elements in soils and plants. Taylor and Francis Group.
12. Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C., 2017. A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247-268. https://doi.org/10.1016/j.gexp- lo.2016.11.021
13. Khromykh, N., Lykholat, Y., Shupranova, L., Kabar, A., Didur, O., Lykholat, T., & Kulbachko, Y., 2018. Interspecific differences of antioxidant ability of introduced Chaenomeles species with respect to adaptation to the steppe zone conditions. Biosystems Diversity, 26(2), 132–138. doi: 10.15421/011821
14. Kivinen, S., 2017. Sustainable post-mining land use: are closed metal mines abandoned or reused space? Sustainability, 9, 1705. https://doi.org/10.3390/ su9101705
15. Komarova, I. О., 2015a. Buferni vlastyvosti gruntiv yak pokaznyk zabrudnennia vazhkymy metalamy edafotopiv Kryvorizkoi urboekosystemy [Buffer properties as index of edaphotope heavy met- al pollution of Kryvyi Rih urban ecosystems]. Ahroekolohichnyi zhurnal [Agroecological jour- nal], 4, 34-44. (in Ukrainian)
16. Komarova, I. O., 2015b. Osoblyvosti funktsionuvan- nia roslynnoho orhanizmu v urbotekhnohennii ekosystemi (analiz stanu problemy) [Features of functioning of the plant organism in the ur- batehnogennoy ekosistemme (the analysis of the problem)]. Pytannia bioindykatsii ta ekolohii [Problems of Bioindication and Ecology], 20 (2), 18-29. (in Ukrainian)
17. Lykholat, T. Yu., Lykholat, O. A., Marenkov, O. M., Kulbachko, Yu. L., Kovalenko, I. M. & Didur, O. O., 2019. Xeneostrogenes influence on cholinergic regulation in female rats of different age. Ukrainian Journal of Ecology, 9(1), 240–243.
18. Lykholat, T., Lykholat, O., & Antonyuk, S., 2016. Im- munohistochemical and biochemical analysis of mammary gland tumours of different age patients. T︠ S︡ itologi︠ia︡ i genetika, 50(1), 40-51. DOI: 10.3103/S0095452716010072
19. Maathuis, F. J. M., 2019. Physiological functions of min- eral macronutrients. Current Opinion in Plant Biology, 12, 250-258. https://doi.org/10.1016/j.
pbi.2009.04.003
20. Macdonald, S. E., Landhausser, S. M., Skousen, J., Franklin, J., Frouz, J., Hall, S., Jacobs, D., & Quideau, S., 2015. Forest restoration following surface min- ing disturbance: challenges and solutions. New Forests, 46, 703–732. https://doi.org/10.1007/ s11056-015-9506-4
21. Masiuk, O., Kharytonov, M., & Stankevich, S., 2020. Remote and ground-based observations of land cover restoration after forest reclamation within a brown coal basin. Journal of Geology, Geography and Geoecology, 29 (1), 135-145. https://doi.org/ https://doi.org/10.15421/112012
22. McDonald, J. H., 2014. Handbook of biolological statis- tics. Sparky house publishing.
23. Nazarenko M.M. & Lykholat Y.V., 2018. Influence of relief conditions on plant growth and development. Dniprop. Univer.bulletin. Geology, geography, 26(1). 143-149. doi: 10.15421/111815
24. Nazarenko, M., Lykholat, Y., Grigoryuk, I., & Khromykh, N., 2018. Optimal doses and concentrations of mutagens for winter wheat breeding purposes. Part I. Grain productivity. Journal of Central European Agriculture, 19(1), 194–205. DOI: /10.5513/JCEA01/19.1.2037
25. Orlov, D. S., 1992. Himiya pochv [Chemistry of soil]. Mos- cow University Publishing House. (in Russian)
26. Palchykov, V., Khromykh, N., Lykholat, Y., Mykolenko, S., Lykholat, T., 2019. Synthesis and Plant Growth Regulatory Activity of 3-Sulfolene Derivatives. Chemistry & Chemical Technology, 13, 4, 424- 428. https://doi.org/10.23939/chcht13.04.424
27. Pansu, M., & Jacques, G., 2006. Handbook of Soil Analysis. Springer.
28. Perelman, A. I., 1989. Geohimiya. [Geochemistry]. High school. (in Russian)
29. Pertseva, T., Lykholat, O., & Gurzhiy, O., 2012. Influence of tiotropium bromide (TB) and carbocysteine (C) on mucociliary clearance (MCC) in patients with COPD. European Respiratory Journal, 40(56), 3466.
30. Pietrzykowski, M., 2019. Tree species selection and reaction to mine soil reconstructed at reforested postmine sites: Central and eastern European experiences. Ecological Engineering: X, 3, 100012. https://doi.org/10.1016/j.ecoena.2019.100012
31. Podolyak, A. G., & Karpenko, A. F., 2019. Med v pahot- noy I lugovoy pochve Gomelschinyi [Copper in arable and meadow soils of Gomel region]. Ekolohichnyi visnyk Kryvorizhzhia [Ecological Bulletin of Kryvyi Rih District], 4, 56–66. https:// doi.org/10.31812/eco-bulletin-krd.v4i0.2560 (in Russian)
32. Pogrzeba, M., Krzyżak, J., Rusinowski, S., McCalmont, J. P., & Jensen, E., 2019. Energy crop at heavy metacontaminated arable land as an alternative for food and feed production: biomass quantity and quality. In: G. Sablok (eds) Plant Metallomics and Functional Omics (pp 1-21). Springer. https://doi.
org/10.1007/978-3-030-19103-0_1
33. Pokhylenko, A., Lykholat, O., Didur, O., Kulbachko, Y. & Lykholat, T., 2019. Morphological variability of Rossiulus kessleri (Diplopoda, Julida) from dif- ferent biotopes within Steppe Zone of Ukraine. Ukrainian Journal of Ecology, 9(1), 176–182
34. Ranjan, V., Sen, P., Kumar, D., & Singh, B., 2016. Rec- lamation and rehabilitation of waste dump by eco-restoration techniques at Thakurani iron ore mines in Odisha. International Journal of Mining and Mineral Engineering, 7 (3), 253-264. https://doi.org/10.1504/IJMME.2016.078372
35. Savosko, V. M., 2011. Melioracija ta fitorekultyvacija zemel navčalnyj posibnyk [Land Melioration and Phytorecultivation manual]. Dionis. (in Ukraine)
36. Savosko, V. M., & Tovstolyak, N. V., 2017. Ecological con- ditions of garden and park territories of former iron mines (Kryvyi Rih Basin, Ukraine). Ukrai- nian Journal of Ecology, 7 (4), 12–17. Retrieved from https://www.ujecology.com/articles/ecolog- ical-conditions-of-garden-and-park-territories-of-
former-iron-mines-kryvyi-rih-basin-ukraine.pdf
37. Savosko, V. M., Lykholat, Y. V., Bielyk, Yu. V., & Lykho- lat, T. Y., 2019b. Ecological and geological determination of the initial pedogenesis on devastated lands in the Kryvyi Rih Iron Mining & Metallurgical District (Ukraine). Journal of Geology, Geography and Geoecology, 28 (4), 738-746. https://
doi.org/10.15421/111969
38. Savosko, V. M., Lykholat, Yu. V., Bielyk, Yu. V., & Grygoryuk, I. P., 2019a. Apofitni ta adventyvni derevni vydy na devastovanykh zemliakh hranitnykh karieriv Kryvorizhzhia [Apophyte and adventives woody species in granite quarry devastated land at Kryvyi Rih district]. Bìoresursi ì prirodokoristuvannâ [Biological Resources and Nature Management], 11 (1-2), 14–25. https://doi.org/10.31548/ bio2019.01.002 (in Ukrainian)
39. Savosko, V. N., 2009. Lokalnoe fonovoe soderzhanie ty- azhelykh metallov v pochvakh Krivorozhskogo zhelezorudnogo regiona [The heavy metals’local background content in soils at Kryvyi Rih iron-ore region]. Gruntoznavstvo [Soil Science], 10 (3-4), 64-73. (in Russian)
40. Savosko, V. N., 2016. Tyazhelyie metallyi v pochvah Krivbassa [Heavy Metals in Soils at Kryvbas]. Dionat. (in Russian)
41. Savosko, V., Lykholat, Yu., Domshyna, K., & Lyk- holat, T., 2018. Ekolohichna ta heolohichna zumovlenist poshyrennia derev i chaharnykiv na devastovanykh zemliakh Kryvorizhzhia [Eco- logical and geological determination of trees and shrubs’ dispersal on the devastated lands at Kryvorizhya]. Journal of Geology, Geography and Geoecology, 27 (1), 116-130. https://doi. org/10.15421/111837 (in Ukrainian)
42. Shcherbyna, R. O., Danilchenko, D. M., Parchenko, V. V., Panasenko, O. I., Knysh, E. H., Khromykh, N. O., & Lykholat, Y. V. (2017). Studying Of 2-((5-R-4- R1-4H-1,2,4-Triazole-3-Yl)Thio)Acetic Acid Salts Influence On Growth And Progress Of Blackberries (KIOWA Variety) Propagules. Research Journal of Pharmaceutical, Biological and Chemical Science, 8, 975-979.
43. Shvaiko, V., & Manyuk, V., 2017. The Ecological Network of the subregional level of Dnipropetrovsk region (Pokrovsky and Mezhyvsky districts). Journal of Geology, Geography and Geoecology, 25 (1), 119-130. https://doi.org/https://doi. org/10.15421/111713
44. Skousen, J., & Zipper, C. E., 2014. Post-mining policies and practices in the Eastern USA coal region. International journal of coal science & technology, 1 (2), 135–151. https://doi.org/10.1007/s40789- 014-0021-6
45. Sparks, D. L., 2003. Environmental soil chemistry. Elsevier Science.
46. Sposito, G., 2008. The Chemistry of Soils. Oxford University Press.
47. Stehman, C. F., Willey, J. D., Avery, G. B., Manock, J. J., & Skrabal, S. A., 1999. Chemical Analysis of Soils: an Environmental Chemistry Laboratory for Undergraduate Science Majors. Journal of Chemical Education, 76 (12), 1693−1694. https://doi. org/10.1021/ed076p1693
48. Tsvetkova, N. M., Pakhomov, O. Y., Serdyuk, S. M., & Yakyba, M. S., 2016. Biologichne riznomanittja Ukrajiny. Dnipropetrovs’ka oblast’. Grunty. Metaly u gruntah [Bіological diversity of Ukraine. The Dnipropetrovsk region. Soils. Metalls in the soils]. Lira. (in Ukrainian)
49. Tykhonenko, D. H., Dehtiarov, V. V., Krokhin, S. V., Ve- lychko, L. L., Novosad, K. B., Balaiev, A. D., Kravchenko, Yu. S., Tonkha, O. L., & Veremeienko, S. I., 2009. Praktykum z gruntoznavstva [Workshop on soil science]. Maidan. (in Ukraine)
50. Wong, M. H., 2003. Ecological restoration of mine degrad- ed soils, with emphasis on metal contaminated soils. Chemosphere, 50 (6), 775–780. https://doi. org/10.1016/S0045-6535(02)00232-1
51. Yakun, S., Xingmin, M., Kairong, L., Hongbo, S., 2016. Soil characterization and differential patterns of heavy metal accumulation in woody plants grown in coal gangue wastelands in Shaanxi, China. Environmental Science and Pollution Research, 23, 13489–13497.
https://doi.org/10.1007/s11356- 016-6432-8
52. Zipper, C. E., Burger, J., Skousen, J. G., Angel, P. N., Barton, C. D., Davis, V., & Franklin, J., 2011. Restoring forests and associated ecosystem services on Appalachian coal surface mines. Environmental Management, 47, 751–765. https://doi. org/10.1007/s00267-011-9670-z
Published
2021-04-09
How to Cite
Savosko, V., Bielyk, Y., Lykholat, Y., Heilmeier, H., Grygoryuk, I., Khromykh, N., & Lykholat, T. (2021). The total content of macronutrients and heavy metals in the soil on devastated lands at Kryvyi Rih Iron Mining & Metallurgical District (Ukraine). Journal of Geology, Geography and Geoecology, 30(1), 153-164. https://doi.org/https://doi.org/10.15421/112114