Long-term forecast of changes in soil erosion losses during spring snowmelt caused by climate within the plain part of Ukraine


Keywords: climate change, period of spring snowmelt, erosion soil losses, forecast until 2100, plains part of Ukraine

Abstract

The paper deals with the forecast of changes in erosion soil losses during the spring snowmelt due to climate change in the regions of Ukraine in the middle of the 21st century (during 2031–2050) and at its end (during 2081–2100) compared with the values of the baseline period (1961–1990). The forecast is based on the use of the so-called “hydrometeorological factor of spring soil loss”. This factor is a part of the physical-statistical mathematical model of soil erosion lossduring spring snowmelt, developed at the Department of Physical Geography of Odesa I. I. Mechnikov State (since 2000 — National) University during the 1980s – 1990s. The long-term average value of the hydrometeorological factor is linearly related to the long-term average value of spring erosion soil loss. Therefore, the relative change in the hydrometeorological factor corresponds to the relative change in soil erosion losses. The developed methodology for assessing climate-induced changes in soil erosion losses in five regions of Ukraine (North, West, Center, East and South) takes into account the change in water equivalent of snow cover at the beginning of snow melting, the change in surface runoff and its turbidity, and changes in soil erodibility. The forecast of changes in erosion soil loss was carried out using projections of annual and monthly average air temperatures and precipitation for 2031–2050 and 2081–2100 in accordance with scenario A1B from AR4 of the IPCC. As a result of the research, it was found that both in the middle and at the end of the 21st century a decrease in the rate of soil erosion during the period of spring snowmelt is expected. During 2031–2050, the expected soil losses will be less than corresponding baseline period values within the West region by 79%, within the North and East regions by 81%, and within the Center region by 85%. In the South region, the spring soil losses will be zero due to the lack of snow cover. During 2081–2100 snow cover will be absent not only in the South region, but also in the Center and East regions. In the regions North and West snow cover will remain, but the spring soil erosion losses will decrease by dozens of times and will be so small that they can also be ignored.

Author Biography

Oleksandr A. Svetlitchnyi
Odesa I. I. Mechnikov National University,Odesa, Ukraine

References

1. Atlas Ukrayiny` [Atlas of Ukraine], 2000.Pilot project of electronic version of the National Atlas of Ukraine. Institute of Geography of the National Academy of Sciences of Ukraine.TOV “Intellectual Systems GEO”.Kyiv.
2. Balyuk, S.A., Medvedyev, V.V., Tarariko, O.G.,Grekov, V.O., Balayev, A.D. (eds.), 2010. Nacional`na dopovid` pro stan rodyuchosti g`runtiv Ukrayiny` [National report on soil fertility in Ukraine]. ТОV “VIKPRINT”, Kyev.
3. Barabanov, A. T., Panov, V. I., 2012. K voprosu o prognoze poverhnostnogo stoka talyh vod v lesostepnoj i stepnoj zonah [On the prediction of snowmelt runoff on the surface in forest-steppe and steppe zones]. Arid Ecosystems2(4), 216-219. Retrieved from: https://doi:10.1134/S2079096112030031 (in Russian).
4. Barabanov, A.T., Uzolin, A.I., Kulik, A.V., Kochkar, M.M., 2016. Teoreticheskie krivye verojatnosti prevyshenija poverhnostnogo stoka talyh vod i stokoregulirujushhaja rol’ zjabi na kashtanovyh i temno-kashtanovyh pochvah Volgogradskoj oblasti [Meltwater surface runoff theoretical curve exceedance probability and plowed fields flow regulating role on chestnut and dark chestnut soils of the Volgograd region]. Proceedings of Nizhnevolzskiy Agrouniversity Complex: science and higher vocational education. Volgograd State Agrarian University 2 (42), 40–48 (in Russian).
5. Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, J.P. (Eds.), 2008.Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva.
6. Baver, L.D., Rhoades, H.F., 1932. Soil aggregate analysis as an aid in the study of soil structure. Journal of the American Society of Agronomy 24, 920–921.
7. Bulygin,S.Yu., Lisetskiy, F.N., 1992. Soil microaggregation as an index of erosion resistance.Euras. Soil Sci. 24 (3), 59–65.
8. Chornyy, S.G., 1996. Sxy`lovi zroshuvani agrolandshafty`: eroziya, gruntoutvorennya, racional`ne vy`kory`stannya [Slope irrigated landscapes: erosion, soil formation, rational use]. Borisfen, Kherson (inUkrainian).
9. Chornyy, S.G., Khotinenko, O.M., Voloshenyuk, A.V.,2015. Transformaciyaproty`deflyacijnoyi stijkostigruntuvkontekstisuchasny`xzminklima tu [The transformation of soils wind erodibility in the context of modern climate change]. Agrochemistry and Soil Science 83, 49–54 (in Ukrainian).
10. Ciscar, J.C., Iglesias, A., Feyen, L., Goodess, C.M., Szabó, L., Christensen, O.B., Nicholls, R., Amelung, B., Watkiss, P., Bosello, F., Dankers, R., Garrote, L., Hunt, A., Horrocks, L., Moneo, M., Moreno, A., Pye, S., Quiroga, S., van Regemorter, D., Richards, J., Roson, R., Soria, A., 2009. Climate change impacts in Europe. Final report of the PESETA research project .Publications Office of the European Union, 116 p, Luxembourg. Retrieved from: https://doi.org/10.2791/32500.
11. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. (Eds.).Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA.Retrieved from: https:// www.ipcc.ch/site/assets/uploads/2018/05/ar4_wg1_full_report-1.pdf.
12. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.).Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Retrieved from: http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.
13. De Roo, A.P.J., Wesseling C.G., Ritserma C.J., 1996. LISEM: A single event physically-based hydrologic and soil erosion model for drainage basins. I: Theory, input and output. Hydrological Processes 10, 1107–1117.
14. Eekhout, J.P.C., De Vente, J., 2019. How soil erosion model conceptualization affects soil loss projections under climate change. Progress in Physical Geography, 1-21. Retrieved from:https://doi.org/10.1177/0309133319871937.
15. Farrell, P., Abatzoglou, J., Brooks, E., 2015. The impact of climate change on soil erosion. REACCH Annual Report, Year 4. Carbon, nitrogen and water, 70–71. Retrieved from: https://www.reacchpna.org/sites/default/files/REACCHreportYr4.pdf.
16. Golosov, V. N., Gennadiev, A. N., Olson, K. R., Markelov, M. V., Zhidkin, A. P., Chendev, Yu. G., Kovach R. G., 2011. Spatial and temporal features of soil erosion in the forest-steppe zone of the East European Plain. Euras. Soil Sci. 44 (7), 794–801.
17. Gopchenko, Ye.D., Ovcharuk, V.A., Semenova, I.G., 2012. Naukovo-metody`chni pidxody` do vraxuvannya global`ny`x zmin klimatu pry` rozraxunkax maksy`mal`nogo stoku richok [Scientific and methodical approaches to taking into account global climate changes in calculations of maximum runoff of rivers]. Bulletin of Odesa State Ecological University 14, 141–150 (in Ukrainian).
18. Govers, G., 1990. Empirical relationships on the transporting capacity of overland flow. AHS Publ.189, 45–63.
19. Grebin, V.V., 2010. Suchasny`j vodny`j rezhy`m richok Ukrayiny` (landshaftno-gidrologichnmj analiz) [Modern water regime of the rivers of Ukraine (landscape-hydrological analysis)]. Nika–Center, Kyiv (in Ukrainian).
20. Gusarov, A.V., Golosov, V.N., Sharifullin, A.G., Gafurov, A.M., 2018. Contemporary trend in erosion of arable southern chernozems (Haplic Chernozems Pachic) in the west of Orenburg oblast (Russia). Euras. Soil Sci. 51 (5), 561–575. Retrieved from: https://doi.org/0.1134/S1064229318050046.
21. Instrukcija po opredeleniju raschetnyh gidrologicheskih harakteristik pri proektirovanii protivojerozionnyh meroprijatij na Evropejskoj territorii SSSR [Instruction for determining of the calculated hydrological characteristics in the design of antierosion measures on the European territory of the USSR], 1979. Hydrometeoizdat, Leningrad (inRussian).
22. Каraushev, А.V., 1977. Teorija i metody raschetov rechnyh nanosov [Theory and methods of calculation of river sediments]. Hydrometeoizdat, Leningrad (in Russian).
23. Klimaty`chny`j kadastr Ukrayiny: standartni klimaty`chni normy` za period 1961-1990 rr . [Climatic Cadastre of Ukraine: standard climate norms for the period 1961–1990], 2006. Electronic resource. Central Geophysical Laboratory, Kyiv (in Ukrainian).
24. Komissarov, M.A., Gabbasov, I.M., 2014. Snowmelt Induced soil erosion on gentle slopes in the southern Cis–Ural Region. Euras. Soil Sci. 47 (6), 598–607.
25. Kozyra, J., Grekov, V.O., Krakovska, S.V.,2017.Rozrobka koncepciyi nacional`noyi polity`ky` adaptaciyi sil`s`kogospodarstva Ukrayiny` do zminy` klimatu [Developing a concept of the national policy of the adaptation of the agriculture of Ukraine to climate change]. Final Report of the Service of Expert Support ClimaEastCEEF2016–083–UA.
Retrieved from: http://1067656943.n159491. test.prositehosting.co.uk/wp-content-sec/uploads/2017/05/CEEF-083-UA-final-report-UKR_v7.pdf (in Ukrainian).
26. Krakovska,S.V.,Palamarchuk, L.V., Shedemenko I.P., Djukel, G.O., Gnatiuk, N.V., Shpytal, T.M., Bilozerova, A.K. Doslidzhennya rehional’nykh osoblyvostey zminy klimatu v Ukrayini u XXI stolitti na osnovi chysel’noho modelyuvannya [Regional studies of climate change in Ukraine in the XXI century based on numerical simulation], 2013. Final Report.State registration No. 0111U001571.UkrHMI, Кyiv (in Ukrainian).
27. Li,Z., Fang, H., 2016. Impacts of climate change on water erosion: A review. Earth-Science Reviews 63, 94-117. Retrieved from: https://doi.org/10.1016/j.earscirev.2016.10.004.
28. Lipinsky, V.M., Diachuk, V.A., Babichenko, V.M. (eds.), 2003. Klimat Ukrayiny` [Climate of Ukraine]. Raevsky Publishing House, Kyiv (in Ukrainian).
29. Loboda, N.S., Bozhok, Yu.V., 2016. Vodni resursy` Ukrayiny` XXI storichchya za scenariyamy` zmin klimatu (rcp8.5 ta rcp4.5) [Water resources of Ukraine XXI century under climate change scenarios (rcp8.5 and rcp4.5)]. UkranianHydrometeorological Journal 17, 114–122 (in Ukrainian).
30. Medvedev, I.F., Levitskaya, N.G., Makarov, V.Z., 2016. Rezul’taty monitoringa jerozionnyh processov na chernozemah Povolzh’ja [The results of monitoring of erosion processes on chernozems of the Volga region]. Proceedings of the University of Saratov.New series, Earth Science Series 16 (3), 142–146 (in Russian).
31. Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., Chisci, G., Torri, D., Styczen, M.E., 1998. The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms 23, 527-544.
32. Ovcharuk, V.A., 2018. Maksy`mal`ny`j stik vesnyanogo vodopillya richok Ukrayiny`: rozraxunkovi modeli ta yix realizaciya [Maximum runoff of spring flood waters of Ukraine: estimated models and their implementation]. Dr. (Geogr.) Sc. Theses, Odesa, Odesa State Environmental University, 569 рp.Retrieved from: http://eprints.library.odeku.edu.ua/1015/7/Ovcharuk_Maksimalnii%20stik_DIS_D_2018.pdf(in Ukrainian).
33. Paroissien, J.-B., Darboux, F., Couturier, A., Devillers, B., Mouillot, F., Raclot, D., Bissonnais, Y., 2015. A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France). Journal of Environmental Management, Volume 150, 57-68. Retrieved from: https://doi.org/10.1016/j.jenvman.2014.10.034.
34. PCRaster: Software for Environmental Modeling, 2018. Retrieved from: Retrieved from:http://pcraster.geo.uu.nl/downloads/latest-release/.
35. Perović, V., Ratko Kadović, R., Djurdjević, V., Braunović, S., Čakmak, D., Miroslava Mitrović, M., Pavle Pavlović, P., 2019. Effects of changes in climate and land use on soil erosion: a case study of the Vranjska Valley, Serbia. Reg Environ Change19, 1035–1046.Retrieved from: https://doi.org/10.1007/s10113-018-1456-x.
36. Petelko, A.I., Panov, V.I., 2014. Harakteristika poverhnostnogo stoka talyh vod s raznyh ugodij za 50 let [Description of superficial flow melted waters from different lands for 50 years]. Agricultural Bulletin of Stavropol Region №4 (16), 155-162 (in Russian).
37. Petelko, A.I., Barabanov, A.T, 2014. Pokazateli stoka talyh vod za 1959–2008 gody [Indices of thaw water runoff for the 1959–2008 years]. Prirodoobustroystvo 1, 78-83 (in Russian).
38. Prokopenko, S.S., 1986. Ocenka srednego godovogo vesennego smyva pochvy dlja territorii Dobrjanskoj orositel’noj sistemy [Estimation of the average annual spring wash off of soil for the territory of the Dobryansky irrigation system]. In: Complex of the priority and perspective scientific and practical tasks on meliorative measures in the
South of Ukraine, Kherson, 70–71 (in Russian).
39. Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., 1997. Predicting Soil Erosion By Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE)—USDA Agricultural Handbook 703. U.S. Department of Agriculture, Washington DC.
40. Routschek, A., Schmidt, J., Kreienkamp, F., 2014. Impact of climate change on soil erosion — a highresolution projection on catchment scale until 2100 in Saxony/Germany.CATENA 121, 99-109. Retrieved from: https://doi.org/10.1016/j.catena.2014.04.019.
41. Shakirzanova, Zh. R., 2015. Dovgostrokove prognozuvannya xaraktery`sty`k maksy`mal`nogo stoku vesnyanogo vodopillya rivny`nny`x richok ta estuariyiv tery`toriyi Ukrayiny` [Long-term forecasting of characteristics of maximum runoff of spring floodplain rivers and estuaries in Ukraine]. FOP Bondarenko M., Odesa (in Ukrainian).
42. Shestoe nacional’noe soobshhenie Ukrainy po voprosam izmenenija klimata [Sixth National Communication of Ukraine on Climate Change], 2013. Кyiv. Retrieved from: https://unfccc.int/files/national_reports/annex_i_natcom/submitted_natcom/application/pdf/6nc_v7_final_[1].pdf
43. Shin, H.J., Park, M.J., Ha, R., Kim, S.J., 2008.Assessment of climate change impact on snowmelt in mountainous watersheds of South Korea using SLURP hydrogical model.Published by the American Society of Agricultural and Biological Engineers, Providence Rhode Island, June 29 – July 2, 2008. Retrieved from: https://doi.org/10.13031/2013.25129.
44. Shvebs,H.I., 1974. Formirovanie vodnoj jerozii, stoka nanosov i ih ocenka [Formation of water erosion, sediment runoff and evaluation].Hydrometeoizdat, Leningrad (in Russian).
45. Shvebs,H.I., 1981. Teoreticheskie osnovy jeroziovedenija [Theoretical basis of soil erosion science]. Publishing House «Vishcha Schkola», Kiev–Odesa (in Russian).
46. Sobol,N.V., Gabbasova, I.M., Komissarov, M.A., 2015. Impact of climate changes on erosion processes in Republic of Bashkortostan. Arid Ecosystems 5 (4), 216–221. Retrieved from: https://doi.org/10.1134/S2079096115040137.
47. Sribnyi, I.A., Vergunov, V.A., 1993. Vyznachennia zmyvu hruntu zi skhyliv [Determination of the soil losses from the slopes]. Herald of agrarian science, 7, 42-46 (in Ukrainian).
48. Stone, R.S., Dutton, E.G., Harris, J.M., Longenecker D., 2002. Earlier spring snowmelt in northern Alaska as an indicator of climate change. Journal of Geophysical Research (Atmospheres) 107 (D10). pp. ACL 10-1 to ACL 10-13.Retrieved from: https://doi.org/10.1029/2000jd000286.
49. Svetlitchnyi, A.A., Chоrnyу, S.G., Shvebs, H.I., 2004. Jeroziovedenie: teoreticheskie i prikladnye aspekty [Soil erosion science: theoretical and applied aspects]. University Book, Sumy (in Russian).
50. Svetlitchnyi,A.A.,1999. The principles of improving empirical models of soil erosion.Euras.SoilSci. 32 (8), 917–923.
51. Trotochaud, J., 2015. Climate change impact assessments using Water Erosion Prediction Project model. Purdue University, West Lafayette, Indiana. Retrieved from: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1642&context=open_access_theses.
52. Wang, L., Cherkauer, K.A., Flanagan D.C., 2018. Impacts of Climate Change on Soil Erosion in the Great Lakes Region.Water 10, 715.Retrieved from: https//doi.org/10.3390/w10060715.
Published
2020-10-11
How to Cite
Svetlitchnyi, O. (2020). Long-term forecast of changes in soil erosion losses during spring snowmelt caused by climate within the plain part of Ukraine. Journal of Geology, Geography and Geoecology, 29(3), 591-605. https://doi.org/https://doi.org/10.15421/112054