2.5 dimensional model of mantle heterogeneities under the Ukrainian shield according to the gradients of the velocities of seismic waves

Keywords: mantle discontinuities, 2,5D model, directional derivatives, velocity inversion, gradient analysis, mosaic pattern, depth correction, tectonic structures, gradient-like change, seismic P-waves, curve inflection, Ukrainian Shield


We analyze the basic techniques for the investigation of the deep structure of the mantle and the shortcomings of the models of mantle structures derived from them. Thus, we reveal that there is no analysis of the velocity field by means of analytical transformants. Therefore, we developed and tested a new approach to define the mantle boundaries based on the calculations of the sequence of P-waves velocity derivatives. As a result, we obtain some new set of velocity gradient distributions for the principal tectonic structures of the Ukrainian Shield along the composite profile. The boundaries of the mantle discontinuities according to the velocity gradient we define in a special manner to eliminate the false anomalies and the fluctuations of the velocity curves that occur due to the conversion of the hodograph into the mean velocities. The smoothing of the velocity curve we perform with a previously defined wavelength step being equal to 50 km. We treat the calculated velocity gradient anomalies as the useful signal response above the appropriate sections, which have different velocity accelerations levels inside the upper mantle. We assume that the mantle anomalies have the same physical background (density/viscosity distributions, temperature gradients etc.) within each range with the equal acceleration value. However, the singular points determined by the inflections of the gradient curve could be the possible boundaries of additional inhomogeneities within the mantle. We calculate both the 1st and the 2nd derivatives for the velocity curves obtained. The excesses 2.5-D model of the 1-th and 2-th gradient curves (the acceleration of the gradvp itself) determine the position of the max / min anomalies of gradvp at the consolidated seismic profile within the Ukrainian Shield. Finally, we analyze in detail the distribution of velocity gradients of P-waves within the upper mantle in the depth range of 50–750 km. It results in the identification of a series of additional gradient velocity boundaries within three principal structural horizons of the upper mantle (under ~ 200–300 km, ~ 410–500 km, and ~ 600–650 km respectively).

Author Biographies

Liudmyla O. Shumlianska
Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv
Yurii I. Dubovenko
Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv
Petro H. Pigulevskyy
Institute of Geophysics, National Academy of Sciences of Ukraine, Kyiv


1. Pigulevskiy, P.I., 2011. Stroyeniye verkhney mantii yugovostochnoy chasti Ukrainskogo shchita po geologo-geofizicheskim dannym [The structure of the upper mantle of the southeastern part of the Ukrainian Shield according to geological and geophysical data]. Vestnik of the Voronezh State University. Geologiya. No 1. 93-200. (in Russian).
2. Kupriyenko, P.Y., Makarenko I.B., Starostenko V.I., Legostayeva О.V., 2007. Trokhmernaya plotnostnaya model zemnoy kory i verkhney mantii Ukrainskogo shchita [Three-dimensional density model of the earth’s crust and upper mantle of the Ukrainian Shield]. Geophysical Journal. Vol 29. No 5. 3-27. (in Russian).
3. Lawrence, J.F., Shearer P.M., 2006. A global study of transition zone thickness using receiver functions. J. Geophys. Res. Vol. 111. Issue B06307. 10 p. DOI: 10.1029/2005JB003973.
4. Kaneshima, S., 2016. Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors. 257. 105-114. https://doi.org/10.1016/j. pepi.2016.05.004
5. Jenkins, J., Deuss, A., & Cottaar S., 2017. Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe. Earth and Planetary Science Letters. 459. 196–207. DOI: 10.1016/j.epsl.2016.11.031
6. Trampert, J., & Fishtner A., 2013. Global imaging of the Earth’s deep interior seismic constrains on anisotropy, density and attenuation. In: S.-I. Karato, (Ed.), Physics and Chemistry of Deep Earth. Рp. 324–351. USA: Wiley.
7. Deuss, A., Andrews, J., Day E., 2013. Seismic observations of mantle discontinuities and their mineralogical and dynamical interpretation. In: S.-I. Karato, (Ed.), Physics and Chemistry of Deep Earth. Рp. 287–323. USA: Wiley.
8. Muirhead, K. J., & Hales A. L., 1980. Evidence for P wave velocity discontinuities at depths greater than 650 km in the mantle. Physics of the Earth and Planetary Interiors. 23. 304–313.
9. Petersen, N., Gossler, J., Kind, R, Stammler, K., & Vinnik L., 1993. Precursors to SS and the structure of transition zone of the northwestern Pacific. Geophys. Res. Letters. 20(4). 281–284.
10. Irifune,T., Shinmei, T., McCammon, C. A., Miyajima, N., Rubie D. C., & Frost D. J., 2010. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science. 327(5962). 193–195.
11. Liu, L.-G., 1974. Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophys. Res. Letters. 1. 277– 280.
12. Johnson, L. R., 1969. Array measurements of P velocities in the lower mantle. Bull. of Seismol. Soc. of America. 59(2). 973–1008.
13. Dziewonski, A.M., & Anderson D.L., 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors. 25(4). 297–356.
14. Kennett, B., Engdahl, E., & Buland R., 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122. 108–124.
15. Simmons N. A., Forte, A. M., Boschi, L., & Grand, S. P., 2010. GyPSuM: A joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. 115. B12310. DOI: 10.1029/2010JB007631
16. Lehmann, I., 1961. S and the structure of the upper mantle. Geophys. J. R. Astron. Soc. 4. 124–138.
17. Revenaugh, J., Jordan, T.H., 1991. Mantle layering from ScS reverberations 3. The upper mantle. J. Geophys. Res. 96 (B12). 19781–19810.
18. Revenaugh, J., Williams Q., 2000. The seismic X discontinuity: observation and modeling. EOS Trans. AGU. 81. F922.
19. Andrews. J., Deuss. A., 2008. Detailed nature of the 660 km region of the mantle from global receiver function data. J. Geophys. Res. Vol. 113. Issue B005. doi:10.1029/2007JB005111
20. Shearer, P.M., 1990. Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity. Nature. 344. 121–126.
21. Shearer. P.M., 1991. Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases. J. Geophys. Res. 96. 18147–18182. 22. Bock. G., 1994. Synthetic seismogram images of upper mantle structure: no evidence for a 520-km discontinuity. J. Geophys. Res. 99 (B8). 15843– 15851.
23. Flanagan. M.P., Shearer P.M., 1998. Global mapping of topography on transition zone velocity discontinuities by stacking of SS precursors. J. Geophys. Res. 103 (B2). 2673–2692.
24. Houser. C., Masters G., Flanagan M.P, Shearer P.M., 2008. Determination and analysis of long-wavelength transition zone structure using SS precursors. Geophys. J. Int. 174. 178–194.
25. Fichtenholtz. G. М., 1964. Kurs differetsial’nogo i integral’nogo ischisleniya [Course of differential and integral calculus]. Vol 2. Moscow: Gostehizdat. 566. (in Russian). 26. Kudriavtsev. L. D., 1981. Kurs matematicheskogo analiza [Course of mathematical analysis]. Vol. 1. Moscow: Mir. 648. (in Russian).
27. Geyko. V. S., Shumlianskaya L.А., Tsvetkova Т.А., Bugayenko I.V., Zayets L.N. Trokhmernaya model’ verkhney mantii Ukrainy po vremenam prikhoda R-voln [Three-dimensional model of the upper mantle of Ukraine according to the times of the arrival of P-waves]. Geophysical Journal. 2006. Vol. 28, 1. 3-16. (in Russian).
28. Shumlianskaya. L.А., Tripolskiy. А.А., Tsvetkova.Т.А., 2014. Vliyaniye skorostnoy struktury kory na rezul’taty seysmicheskoy tomografii Ukrainskogo shchita [The influence of the velocity structure of the crust on the results of seismic tomography of the Ukrainian Shield]. Geophysical Journal. Vol. 36, 4. 95-117. (in Russian).
29. Geyko,V.S., 2004. A general theory of the seismic traveltime tomography. Geophysical Journal. Vol. 26, 2. 3–32.
30. Tripolsky, O., Kaluzhnaya. L., 2001. Deep structure of the Ukrainian shield plutons on the basis of seismic data. Acta Geophys. Pol. 49(4). 497–507.
31. Artemyev, А.Е., 2012. Fizicheskiye osnovy seysmorazvedki [Physical fundamentals of seismic exploration]. Tutorial. Saratov: Nauka. 56 p. (in Russian).
32. Kravtsov, Yu.А., Оrlov. Yu.I., 1980. Geometricheskaya optika neodnorodnykh sred [Geometric optics of inhomogeneous media]. Moscow: Naukа, 304 p. (in Russian). 33. Savarenskiy, Е.Ph., 1952. Ob uglakh vykhoda seysmicheskoy radiatsii i nekotorykh smezhnykh voprosakh [On angles of seismic radiation exit and some related issues]. Proceedings of Geophysics. Inst. АS of USSR. No. 15(142). 1-109. (in Russian).
34. Gintov, О.B., Pashkevich, I.К., 2010. Tektonofizicheskiy analiz i geodinamicheskaya interpretatsiya trokhmernoy geofizicheskoy modeli Ukrainskogo shchita [Tectonophysical analysis and geodynamic interpretation of the three-dimensional geophysical model of the Ukrainian Shield]. Geophysical Journal. Vol. 32. No. 2. 6–27. (in Russian).
35. Deuss Arwen, 2009. Global Observations of Mantle Discontinuities Using SS and PP Precursors. Surv. Geophys. Vol. 30, pp. 301–326.
DOI 10.1007/ s10712-009-9078-y.
36. Gavrilov, V.P., 2005. Geotektonika [Geotectonics]. Textbook. Moscow: Neft’ i Gaz. 368 p. (in Russian).
37. Pigulevskiy P.I., Shumlianska L.A., Dubovenko Yu.I., Svystun V.K., 2019. The mantle disruptions by P-waves velocity gradients analysis under East of Ukrainian Shield. 18th Int. Conference on Geoinformatics: Theoretical and Applied Aspects, Kyiv, Ukraine, May 13–16 2019. DOI: 10.3997/2214-4609.201902151. 688-693. http:// www.earthdoc.org/publication/publicationdetails/ ?publication=98574
38. Pigulevskiy, P.I., 2011. Veshchestvennyy sostav verkhney mantii yugo-vostochnoy chasti UaShch po geologo-geofizicheskim dannym [The material composition of the upper mantle of the southeastern part of the Ukrainian Shield according to geological and geophysical data]. Nauk. Visnyk NGU Ukrayiny. No. 1. 5-10. (in Russian).
39. Pigulevskiy, P.I., Svystun V.К., 2014. Geologogeofizicheskaya model’ Priazovskogo megabloka Ukrainskogo shchita (analiz, modelirovaniye, rezul’taty) [Geological and geophysical model of the Priazovsky megablock of the Ukrainian Shield (analysis, modeling, results)]. Donetsk: Knowledge (Don. dept.), 207 p. (in Russian).
How to Cite
Shumlianska, L., Dubovenko, Y., & Pigulevskyy, P. (2020). 2.5 dimensional model of mantle heterogeneities under the Ukrainian shield according to the gradients of the velocities of seismic waves. Journal of Geology, Geography and Geoecology, 29(2), 431-441. https://doi.org/https://doi.org/10.15421/112039