Petrogeochemical features of the Neogene collision volcanism of the Lesser Caucasus (Azerbaijan)


Keywords: Neogene collision volcanism, petrogeochemical features, crystallization differentiation, , physical and chemical conditions of formation, Lesser Caucasus

Abstract

The article is devoted to the petrogeochemical features of Neogene collision volcanism in the central part of the Lesser Caucasus within Azerbaijan. The main goal of the study is to determine the thermodynamic conditions for the formation of Neogene volcanism in the central part of the Lesser Caucasus using the available petrogeochemical material. Using factor analysis, as well as the “IGPET”, “MINPET”, “Petrolog-3” programs, material balance calculations were performed that simulate the phenocryst fractionation process, the crystallization temperature, pressure, and figurative nature of the rock-forming minerals of the formation rocks were calculated. It was determined that at the early and middle stages of crystallization of the rocks of the andesite-dacite-rhyolite formation, the fractionation of amphibole played an important role in the formation of subsequent differentiates. Based on computer simulation, it was revealed that rocks of the andesite-dacite-rhyolite formation were formed by fractional crystallization of the initial high-alumina basaltic magma of high alkalinity in the intermediate magma foci. The calculations of the balance of the substance, simulating the process of fractionation of phenocrysts, as well as magnetite, confirmed the possibility of obtaining rock compositions from andesites to rhyolites as a result of this process. In this case, the process of crystallization differentiation was accompanied by processes of contamination, hybridism and mixing. Based on the geochemical features of rare and rare-earth elements, changes in their ratios, the nature of the mantle source and the type of fractionation process are determined. It was revealed that the enrichment of formation rocks by light rare earths, as well as by many incoherent elements, is associated with the evolution of enriched mantle material. Under high water pressure, as a result of the fractionation of olivine and pyroxene, high-alumina basalts are formed from primary high-magnesian magma, which can be considered parental magma. It was established that, in contrast to the elevated Transcaucasian zone in the more lowered East Caucasus, under conditions of increased fluid pressure and reduced temperature, the melt underwent fractional crystallization in the intermediate centers, being enriched with alkaline, large-ion lithophilic elements, light REEs, etc. This is evidenced by the presence of large crystals of feldspars, the contamination of these minerals by numerous crystals of biotite, magnetite, several generations of these minerals, zonality, as well as the presence of related “water” inclusions, such as hornblendites, hornblende gabbro, etc. The physicochemical conditions for the formation of Neogene volcanic rocks of the Lesser Caucasus are determined.

Author Biographies

Nazim A. Imamverdiyev
Baku State University, Azerbaijan Republic, Baku
Minakhanym Y. Gasanguliyeva
Institute of Geology and Geophysics, National Academy of Sciences of Azerbaijan, Azerbaijan Republic, Baku
Vagif M. Kerimov
Azerbaijan Industrial and Oil University, Azerbaijan Republic, Baku
Ulker I. Kerimli
Baku State University, Azerbaijan Republic, Baku

References

1. Balashov, Yu.A., 1976. Geokhimiya redkozemel’nykh elementov [Geochemistry of rare-earth elements]. M.: Nauka, 265 (in Russian).
2. Demina, L.I., Koronovskiy, N.V., 2008. Geodinamicheskiye sledstviya protsessov degidratatsii v zemnoy kore kollizionnykh oblastey [ Geodynamic consequences of dehydration processes in the earth’s crust of conflict areas] . Nauchnaya konferentsiya, Lomonosovskiye chteniya, sektsiya geologiya, 30-31 (in Russian).
3. Gasanguliyeva, M.Ya., 2014. Petrogeokhimicheskaya model’ neogenovogo vulkanizma tsentral’noy chasti Malogo Kavkaza [Petrogeochemical model of Neogene volcanism in the central part of the Lesser Caucasus]. Avtoref. diss. dokt. filosofii nauk o Zemle. Baku, 25 (in Azerbaijanian and Russian).
4. Gasanguliyeva, M.Ya., 2014. Petrogeokhimicheskiye osobennosti neogenovogo vulkanizma tsentral’noy chasti Malogo Kavkaza [Petrogeochemical features of Neogene volcanism in the central part of the Lesser Caucasus]. Otechestvennaya geologiya, 2, 45-53 (in Russian).
5. Gasanguliyeva, M.Ya., Veliyev, A.A., Imamverdiyev, N.A. i dr., 2010. Voprosy petrogenezisa pozdnekaynozoyskogo kollizionnogo vulkanizma Malogo Kavkaza [Issues of petrogenesis of Late Cenozoic collision volcanism of the Lesser Caucasus]. Otechestvennaya geologiya, 4, 33-42 (in Russian).
6. Genshaft, Yu.S., 1977. Eksperimental’noye issledovaniya v oblasti glubinnoy mineralogii i petrologii [Experimental research in the field of deep mineralogy and petrology]. M: “Nauka”, 204 (in Russian).
7. Green, D.H., Ringwood, A.E., 1968. Proiskhozhdeniye bazal’tovykh magm [The origin of basaltic magmas]. V kn.: Petrologiya verkhney mantii, M.: Mir,132-228 (in Russian).
8. Gushchin, A.V., 1977. Raspredeleniye khroma i nikelya v porodakh vulkanicheskoy seriy kak indikator dinamiki petrogeneticheskikh protsessov [Distribution of chromium and nickel in the rocks of the volcanic series as an indicator of the dynamics of petrogenetic processes]. V kn.: Magmaobrazovaniye i yego otrazheniye v vulkanicheskom protsesse, M.: Nauka, 92-98 (in Russian).
9. Ivanova, T.A., Ganzeeev, A.A., Gushchin, A.V., 1989. Redkozemel’nyye elementy v apatite iz shchelochnykh vulkanicheskikh porod na yugevostoke Armenii [Rare-earth elements in apatite from alkaline volcanic rocks in the south-east of Armenia]. Izvestiya Vuzov, Geologiya i Razvedka. 6, 72-75 (in Russian).
10. Imamverdiyev, N.A., 1999. Mineralogicheskiye osobennosti i evolyutsiya sostava porodoobrazuyushchikh i aktsessornykh mineralov porod pozdnekaynozoyskikh vulkanicheskikh seriy Malogo Kavkaza [Mineralogical features and evolution of the composition of rock-forming and accessory minerals of rocks of the Late Cenozoic volcanic series of the Lesser Caucasus]. Mineralogicheskiy zhurnal. Kiyev. vol. 21, № 5/6, 93-100.
11. Imamverdiyev, N.A., 2000. Geokhimiya pozdnekaynozoyskikh vulkanicheskikh kompleksov Malogo Kavkaza [Geochemistry of the Late Cenozoic volcanic complexes of the Lesser Caucasus]. Baku: Nafta-Press, 192 (in Russian).
12. Imamverdiyev, N.A., 2003. Geochemistry of rare-earth elements of the Late Cenozoic volcanic series of the Lesser Caucasus. Geochemistry International, “Springer” Pleiades Publishing, Ltd, vol.4, No.4, 379-394.
13. Imamverdiyev, N.A., 2003. Physical and chemical conditions for crystallization of the Late Cenozoic volcanic formations of the Lesser Caucasus. Petrologiya, “Springer” Pleiades Publishing, Ltd, vol.11, No.1, 75-93.
14. Imamverdiyev N.A., Baba-zadeh V.M., Romanko A. et al. 2017. Formation of the late cenozoic volcanic complexes of the Lesser Caucasus. Geotectonics, “Springer” Pleiades Publishing, Ltd. vol. 51, No. 5, 489–498. https://doi.org/10.1134/ S0016852117050041
15. Imamverdiyev, N.A., Gasanguliyeva, M.Ya., Babayeva, G.D. et al., 2018. Petrogenesis of Late Cenozoic collision volcanism in the central part of the Lesser Caucasus (Azerbaijan). Russian Geology and Geophysics, Elsevier, Pleiades Publishing, Ltd. vol.59, issue 1, 42-55. https://doi.org/10.1016/j. rgg.2018.01.003
16. Imamverdiyev, N.A., Gasanguliyeva, M.Ya., Veliyev, A.A., 2015. Petrogeokhimicheskaya model’ pozdnepliotsen-chetvertichnogo kollizionnogo vulkanizma Malogo Kavkaza [Petrogeochemical model of Late Pliocene-Quaternary collision volcanism of the Lesser Caucasus]. Vestnik Bakinskogo Universiteta, seriya yestestvennykh nauk. 1, 66-80 (in Russian).
17. Imamverdiyev, N.A., Veliyev, A.A., Gasanguliyeva, M.Ya., 2017. Petrologiya i geokhimiya pozdnekaynozoyskogo kollizionnogo vulkanizma Malogo Kavkaza [Petrology and geochemistry of Late Cenozoic collision volcanism of the Lesser Caucasus]. Baku, 317 (in Azerbaijanian).
18. Yoder, G.S., Tilli, K.E., 1965. Proiskhozhdeniye bazal’tovykh magm [The origin of basaltic magmas]. M. Mir, 247 (in Russian).
19. Yoder, Kh.,1979. Obrazovaniye bazal’tovoy magmy [The formation of basaltic magma]. M., Mir, 238 (in Russian).
20. Kushiro, I., 1984. Genezis magm ostrovnykh dug na primere Yaponskikh dug [Genesis of magma island arcs on the example of Japanese arcs]. Petrologiya, Doklady 27-y sessii MGK, t.9, Moskva, 122-130 (in Russian).
21. Molyavko, V.G., 1990. Petrologiya pozdnekaynozoyskogo magmatizma Al’piyskogo poyasa YugoVostochnoy Yevropy [Petrology of the Late Cenozoic magmatism of the Alpine belt of Southeastern Europe]. Avtoref. diss.. dokt.geolmin.nauk, Kiyev, 37 (in Russian).
22. Nikolayev, G.S., Borisov, A.A., Ariskin, A.A., 1996. Novyye fO2-barometry dlya zakolochnykh stekol razlichnykh petrokhimicheskikh seriy [New fO2 barometers for barrett glass of various petrochemical series]. Geokhimiya, 9, 836-839 (in Russian).
23. Osborn, Ye.F., 1983. Reaktsionnyy printsip [The reaction principle]. V kn.: Evolyutsiya izverzhennykh porod, M. Mir, 136-171 (in Russian).
24. Panina L.I., Makhmudov S.A., Imamverdiyev N.A., Mamedov M.N. i dr., 1989. Osobennosti evolyutsionnogo preobrazovaniya sostava subshchelochnoy nefelin-normativnoy bazal’toidnoy magmy v protsesse fraktsionnoy kristallizatsii [Features of the evolutionary transformation of the composition of the mildlyalkalinenephelinenormative basaltoid magma in the process of fractional crystallization]. Geologiya i geofizika, 4 ,94-101 (in Russian).
25. Peccerillo A., Taylor S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Miner. Petrol., vol. 58, No. 1, 63-81.
26. Popov, V.S., 1981. Posledovatel’nost’ kristallizatsii izvestkovo-shchelochnykh magm i yeye petrologicheskoye znacheniye [The crystallization sequence of calc-alkaline magmas and its petrological significance]. Geokhimiya, 11, 16651675 (in Russian).
27. Popov, V.S., 1982. Petrologo-geokhimicheskaya model’ formirovaniya orogennykh izvestkovoshchelochnykh seriy [Petrological and geochemical model of the formation of orogenic calc-alkaline series]. V kn: Geokhimiya magmatizma, M.Nauka, 93-124 (in Russian).
28. Popov, V.S., Semina, V.A.., Nikolayenko, Yu.S. ,1987. Geokhimiya noveyshikh vulkanov Kavkaza i ikh proiskhozhdeniye [Geochemistry of the latest volcanoes of the Caucasus and their origin]. V kn.: Geokhimiya kontinental’nogo vulkanizma, M., Nauka, 143-231 (in Russian).
29. Ryabchikov, I.D., 1987. Fiziko-khimicheskiye usloviya protsessov generatsii i differentsiatsii kislykh i srednikh magm [Physical and chemical conditions for the processes of generation and differentiation of acidic and medium magmas]. Magmaticheskiye gornyye porody, t.4, M.: Nauka, 348-359 (in Russian).
30. Tolstoy, M.I., Shirinyan, K.G., Ostafiychuk, I.M. i dr., 1980. Sostav, fizicheskiye svoystva i voprosy petrogenezisa noveyshikh vulkanicheskikh obrazovaniy Armenii [Composition, physical properties and issues of petrogenesis of the latest volcanic formations of Armenia]. Izd.-vo AN Arm. SSR, Yerevan, 322 (in Russian).
31. Frolova, T.I., Burikova, I.A., 1997. Magmaticheskiye formatsii sovremennykh geotektonicheskikh obstanovok [Magmatic formations of modern geotectonic environments]. Izd-vo Moskovskogo Universiteta, 319 (in Russian).
32. Frolova, T.I., Perchuk, L.L., Burikova, I.A., 1989. Magmatizm i preobrazovaniye Zemnoy kory aktivnykh okrain [Magmatism and transformation of the Earth’s crust of active margins]. M., Nedra, 261 (in Russian).
33. Drake, M.J., Well, D.F., 1975. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+ and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochim. et Cosmochim acta, 39, 689-712.
34. Gill, J.B., 1981. Orogenic andesites and plate tectonics. N.Y.-L. Berlin: Springer-Verlag, 396.
35. Hakli, T.A., Wright, T.L., 1967. The fractionation of nickel between olivine and augite as a geothermometer. Geochemica et Cosmochimica Acta, 31, 877-884.
36. Keskin, M., Pearce, J.A., 1994. Trace element and isotope systematics of Collision-related volcanism on the Erzurum-Kars Plateau, North-Eastern Turkey. International volcanological Congress, Abstracts, Ankara.
37. Kudo, A.M., Weill, D.F., 1970. An igneous plagioclase thermometer. Contribs. Mineral. and Petrology, 25 (1).
38. Kyshiro, I., 1977. Melting of hydrous mantle and possible generation of andesitic magma: an approach from synthetic systems. Earth and Planet. Sci. Lett., 22 (4), 294-299.
39. Kyshiro, I., Yoder, H.S. Jr., 1969. Melting of forsterite and enstatite at high pressures under hydrous Conditions. Carnegie Inst. Washington Yearb., 67, 153-158.
40. Le Bas, M.J., Le Maitre, R.W., et al., 1986. A chemical classification of volcanic rocks based on the total alkali-silica (TAS) diagram. J. Petrol., 27, 745750.
41. Sack, R.O., Carmichael, I.S.E., Rivers, M., 1980. Ferricferrous equilibria in natural silicate liquids at 1 bar. Contrib. Mineral. and Petrolology, 75, 369376.
42. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Eds. A.D.Sannders, M.I.Norry. Magmatism in the ocean basin. Geol. Soc. Spec. Publ., 42,313-345.
Published
2020-07-08
How to Cite
Imamverdiyev, N., Gasanguliyeva, M., Kerimov, V., & Kerimli, U. (2020). Petrogeochemical features of the Neogene collision volcanism of the Lesser Caucasus (Azerbaijan). Journal of Geology, Geography and Geoecology, 29(2), 289-303. https://doi.org/https://doi.org/10.15421/112027