Assessment of environmental risks from atmospheric air pollution in industrially developed regions of Ukraine


Keywords: environmental safety, population health, heavy metals, atmospheric air, carcinogenic risk, non-carcinogenic risk

Abstract

Currently, atmospheric pollution is one of the main causes of premature mortality in the world. The problem is especially relevant for economically underdeveloped countries, in particular Ukraine, the economy of which has been developing for a long time in an extensive way. The complicated socio-ecological situation in the territory of the country is due, first of all, to insufficient financing of the medical industry and environmental protection, outdated technologies in industries, etc. The purpose of the study is to assess the environmental risks of atmospheric air pollution in industrialized regions of Ukraine. Kharkiv and Dnipro regions, which are part of the Donetsk-Prydnistrovsky economic macro-district, a powerful center of metallurgy and machine-building of the national level, were selected for the study. As part of the study, the ambient air condition was assessed from the point of view of sanitary-hygienic norms in compliance with state environmental standards as well as the risks of carcinogenic and non-carcinogenic effects from atmospheric pollution.Regional monitoring data on average annual concentrations of common pollutants and heavy metals in the atmospheric air of the cities of Kharkiv and Dnipro regions were used in calculations, averaged over the period from 2014 to 2016. The results of calculations have shown that the total non-carcinogenic risk from atmospheric air pollution in all studied cities exceeds the permissible level: Dnipro – 19.8 HQ; Kamianske– 23.3 HQ; Kryviy Rig – 19.3 HQ; Kharkiv – 11.9 HQ. The pollutants: PM2.5, copper, formaldehyde, nitrogen dioxide, manganese and phenol mostly contribute to the greatest non-carcinogenic risk.  The dominance of these chemicals and elements in the structure of pollution in the studied cities leads to high probability of development of harmful effects in the respiratory organs – 11.1 to 22.3 HQ; cardiovascular system – 2.9 to 12.3 HQ; immune system – 1.7 to 4.7 HQ; eyes – 0.8 to 4 HQ; central nervous system – 1,4 to 4,6 HQ.  The risk of carcinogenic effects is calculated  for substances with proven carcinogenic effects: formaldehyde, nickel, cadmium, lead and chromium. The obtained carcinogenic risk from atmospheric air pollution within the studied cities falls into two categories: conventionally acceptable level of risk and acceptable level of risk. The greatest carcinogenic danger is from pollution of atmospheric air by chromium. Contribution of chromium to total carcinogenic risk ranges from 53.6 to 90.6%. Taking into account the obtained results, it is expedient to include the assessment of the risks to the population’s health in the system of monitoring and control of the environment in Ukraine.

Author Biographies

A. N. Nekos
V. N. Karazin Kharkiv National University
Yu. V. Medvedeva
V. N. Karazin Kharkiv National University
N. I. Cherkashyna
V. N. Karazin Kharkiv National University

References

1. Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the air: a review of the effects of particu- late matter air pollution on human health. Journal of Medical Toxicology, 8(2), 166-175.
2. Avila, D. S., Robson, L. P., & Aschner, M. (2013). Manga- nese in health and disease. Interrelations between essential metal ions and human diseases, (13), 199-227. doi: 10.1007/978-94-007-7500-8_7.
3. Bell, M., Davis, D., & Fletcher ,T. (2004) A retrospective assessment of mortality from the London smog episode of 1952: the role of influenza and pollu- tion. Environmental Health Perspect, (1), 6-8.
4. Caiazzo, F., AshokIan , A., Waitz, L. A., Yim, S., & Bar- rett, S. (2013). Air pollution and early deaths in the United States. Part I: Quantifying the im- pact of major sectors in 2005. Atmospheric En- vironment, 79 (13), 198-208. doi: 10.1016/j.at- mosenv.2013.05.081.
5. Chen, T-M., Kuschner, W. G., Gokhale, J., & Shofer, S. (2007). Outdoor air pollution: nitrogen diox- ide, sulfur dioxide, and carbon monoxide health effects. The American Journal of the Medi- cal Sciences, 333 (4), 249-256. doi: 10.1097/ MAJ.0b013e31803b900f.
6. Dockery, D., Schwartz, J., & Spengler, J . (1992). Air pollution and daily mortality: associations with particulates and acid aerosols. Environmental Research, 59 (2), 362-373. doi: 10.1016/S0013-9351(05)80042-8.
7. Fatkulin, K. V., Gil’manov, A. Zh., & Kostjukov D. V. (2014) Klinicheskoe znachenie i sovremennye metodologicheskie aspekty opredelenija urovnja karboksii metgemoglobina v krovi [Clinical sig- nificance and modern methodological aspects of determining the level of carboxy of methemoglo- bin in the blood]. Prakticheskaja medicina, 3(79), 17-21 (In Russian).
8. Im, U., Brandt, J., Geels, C., Hansen, K. M., Christensen, J. H., Andersen, M. S. … Galmarini, S. (2018). Assessment and economic valuation of air pol- lution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3. Atmo- spheric Chemistry and Physics, 18 (8), 5967- 5989. doi: 10.5194/acp-18-5967-2018.
9. Ivaniuta, S. P., & Kachynskyi, A. B. (2013). Ekolohichna bezpeka rehioniv Ukrainy: porivnialni otsinky [Environmental safety of the regions of Ukraine: comparative assessments]. Stratehichni priory- tety, 3 (28), 157-164 (In Ukrainian).
10. Landrigan, P., Fuller, R., Acosta, N., Adeyi , O., Arnold, R., Basu, N. … Zhong, M. (2017). The Lancet Com- mission on pollution and health. The Lancet Com- missions, 391 (10119), 462-512. doi: 10.1016/ S0140-6736(17)32345-0.
11. Liu, M., Huang, Y., Ma, Z., Jin, Z., Liu, X., Wang, H. … Kinney, PL. (2017). Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012. Environment International, (98), 75-81. doi: 10.1016/j.envint.2016.10.003.
12. Maksymenko, N. V., Medvedeva, Yu. V., & Cherkashyna, N. I. (2019). Dynamics of the temperature regime of the North Atlantic coastal zone as an indicator of changes in the system of thermohaline circu- lation. Journal of Geology, Geography and Geo- ecology, 27(3), 478-474. doi: 10.15421/111871.
13. Malyutina, N. N., & Taranenko, L. A. (2014). Patofizio- logicheskie i klinicheskie aspektyi vozdeystviya metanola i formaldegida na organizm cheloveka [Pathophysiological and clinical aspects of the effects of methanol and formaldehyde on the hu- man body]. Sovremennyie problemyi nauki i ob- razovaniya, 2, 1-11 (In Russian).
14. Nekos, N. A., & Kholin, Yu. V. (2015). Trofoheohrafiia: teoriia i praktyka [Trophogeography: theory and practice]. V. N. Karazin Kharkiv National Uni- versity, Kharkiv (In Ukrainian).
15. Nekos, A. N., & Soloshych, I. O. (2014). Comprehensive evaluation of regional development as a compo- nent of green economy implementation. Actual Problems of Economics, 10(160), 247–251.
16. Obykhod, H. O., Omelchenko, A. A., & Boiko, V. V. (2016). Ekolohichna bezpeka atmosfernoho povi- tria Ukrainy: prostorova strukturyzatsiia [Ecolog- ical safety of atmospheric air of Ukraine: spatial structuring]. Visnyk Pryazovskoho Derzhavnoho Tekhnichnoho Universytetu. Seriia: Ekonomichni nauky, 1(31), 160-167 (In Ukrainian).
17. Revich, B. A., Shaposhnikov, D. A., Avaliani, S. L., Rubin- shtein, K. G., Emelina, S. V., Shiriaev, M. V. … Kislova, O. I. (2015). Hazard assessment of the impact of high temperature and air pollution on public health in Moscow. Gigiena i Sanitariia, 94 (1), 36-40 (In Russian).
18. Rovira, J., Roig, N., Nadal, M., Schuhmacher, M., & Do- mingo, J. L. (2016). Human health risks of form- aldehyde indoor levels: an issue of concern. Jour- nal of Environmental Science and Health, 51(4), 357-363. doi: 10.1080/10934529.2015.1109411.
19. Rukovodstvo po ocenke riska dlja zdorov’ja naselenija pri vozdejstvii himicheskih veshhestv, zagrjaznjajush- hih okruzhajushhuju sredu [Guidelines for as- sessing the risk to public health when exposed to chemicals that pollute the environment]. (2004). Moscov: Federal’nyj centr Gossanjepidnadzora Minzdrava Rossii (In Russian).
20. Shipicyna, M. N., Vasilenko, P. P., Gadaborsheva, T. B., & Chichirov, K. O. (2017). Neobhodimost snizhenija vybrosov vrednyh vydelenija v vozduh rabochej zony na predprijatijah tabachnoj pro- myshlennosti [The need to reduce emissions of harmful emissions in the air of the working zone at the enterprises of the tobacco industry]. Obra-zovanie i nauka v sovremennom mire. Innovacii, 4(11), 239-248 (In Russian).
21. Shmandii, V. M., Klymenko, M. O., Holik, Yu. S., Pryshchepa, A. M., Bakhariev, V. S., & Kharlamova, O.V. (2013). Ekolohichna bezpeka: pidruchnyk [En- vironmental safety: textbook]. Oldi-plius, Kher- son (In Ukrainian).
22. Uriu-Adams, J. Y., & Keen, C. L. (2005). Copper, oxida- tive stress, and human health. Molecular Aspects of Medicine, 26(4-5), 268-298. doi: 10.1016/j. mam.2005.07.015.
23. Wang, H., Chen, H-P., & Liu, J. (2015) Arctic sea ice de- cline intensified haze pollution in Eastern China. Atmospheric and Oceanic Science Letters, 8(1), 1-9.
24. Yatsenko, L. D., & Ivaniuta, S. P. (2013). Obgruntuvannia indykatoriv stanu ekolohichnoi bezpeky Ukrainy. [Background of the indicators of the status of en- vironmental security of Ukraine]. Stratehichni priorytety, 1(26), 134-138 (In Ukrainian).
Published
2019-10-07