Assessment of open source digital elevation models (SRTM-30, ASTER, ALOS) for erosion processes modeling


Keywords: digital elevation model (DEM), SRTM, ASTER GDEM, ALOS

Abstract

The relief has a major impact on the landscape`s hydrological, geomorphological and biological processes. Many geographic information systems used elevation data as the primary data for analysis, modeling, etc. A digital elevation model (DEM) is a modern representation of the continuous variations of relief over space in digital form. Digital Elevation Models (DEMs) are important source for prediction of soil erosion parameters. The potential of global open source DEMs (SRTM, ASTER, ALOS) and their suitability for using in modeling of erosion processes are assessed in this study. Shumsky district of Ternopil region, which is located in the Western part of Ukraine, is the area of our study. The soils of Shumsky district are adverselyaffected by erosion processes. The analysis was performed on the basis of the characteristics of the hydrological network and relief. The reference DEM was generated from the hypsographic data(contours) on the 1:50000 topographical map series compiled by production units of the Main Department of Geodesy and Cartography under the Council of Ministers. The differences between the reference DEM and open source DEMs (SRTM, ASTER and ALOS) are examined. Methods of visual detection of DEM defects, profiling, correlation, and statistics were used in the comparative analysis. This research included the analysis oferrors that occurred during the generation of DEM. The vertical accuracy of these DEMs, root mean square error (RMSE), absolute and relative errors, maximum deviation, and correlation coefficient have been calculated. Vertical accuracy of DEMs has been assessed using actual heights of the sample points. The analysis shows that SRTM and ALOS DEMs are more reliable and accurate than ASTER GDEM. The results indicate that vertical accuracy of DEMs is 7,02m, 7,12 m, 7,60 mand 8,71 m for ALOS, SRTM 30, SRTM 90 and ASTER DEMs respectively. ASTER GDEM had the highest absolute, relative and root mean square errors, the highest maximum positive and negative deviation, a large difference with reference heights, and the lowest correlation coefficient. Therefore, ASTER GDEM is the least acceptable for studying the intensity and development of erosion processes. The use of global open source DEMs, compared with the vectorization of topographic maps,greatly simplifies and accelerates the modeling of erosion processes and the assessment of the erosion risk in the administrative district.

Author Biographies

I. P. Kovalchuk
National University of Life and Environmental Sciences of Ukraine
K. A. Lukianchuk
National University of Life and Environmental Sciences of Ukraine
V. A. Bogdanets
National University of Life and Environmental Sciences of Ukraine

References

1. ALOS Global Digital Surface Model «ALOS World 3D - 30m (AW3D30)». Retrieved from http://www.eorc.jaxa.jp/ALOS/en/aw3d30/
2. ASTER Global Digital Elevation Map. Retrieved from https://asterweb.jpl.nasa.gov/gdem.asp
3. Bairak, H.R., 2014. Mozhlyvosti HIS dlia vidobrazhennia kharakterystyk reliefu i proiaviv suchasnoi ekzodynamiky. [GIS facilities useful to display the relief characteristics and forms of modern exodynamics]. Problems of continuous geographical education and cartography, 19, 3-6. (in Ukrainian).
4. Bannari, A., Mohammed, G., El-Battay, A., & Hameid, N., 2018. Comparison of SRTM-V4.1 and ASTER-V2.1 for Accurate Topographic Attributes and Hydrologic Indices Extraction in Flooded Areas. Journal Of Earth Science And Engineering, 8(1), 8-30. doi: 10.17265/2159-581x/2018.01.002
5. Bayik, C., Becek, K., Mekik, C., & Ozendi, M., 2018. On the vertical accuracy of the ALOS world 3D-30m digital elevation model. Remote Sensing Letters, 9(6), 607-615. doi:10.1080/2150704x.2018.1453174
6. Chang, K., & Tsai, B., 1991. The effect of DEM resolution on slope and aspect mapping. Cartography and Geographic Information Science, 18, 69-77. doi: 10.1559/152304091783805626
7. Cherlinka, V. R., 2013. Osoblyvosti pobudovy rastrovoi hidrolohichno-korektnoi tsyfrovoi modeli mikro- ta mezoreliefu zasobamy HIS GRASS. [Features of hydrologically correct raster digital model of micro- and mesorelief construction using GRASS GIS]. Bulletin of the Agrarian Science of the Black Sea Region, 4(1), 174-182. (in Ukrainian).
8. Chervanov, I. H., 2012. Doslidzhennia reliefu predstavnykamy kharkivskoi heomorfolohichnoi shkoly. [Researching of relief by representatives of the Kharkiv geomorphological school]. Ukrainian Geographic Journal, 4, 3-7. (in Ukrainian).
9. Courty, L., Soriano-Monzalvo, J. C., & PedrozoAcuña, A., 2018. Evaluation of open-access global digital elevation models (AW3D30, SRTM and ASTER) for flood modelling purposes. Retrieved from https://doi.org/10.31223/osf.io/vqgx4
10. EarthExplorer. Retrieved from https://earthexplorer.usgs.gov/
11. Forkuor, G., & Maathuis, B., 2018. Comparison of SRTM and ASTER derived digital elevation models over two regions in Ghana-Implications for hydrological and environmental modeling. In T. Piacentini, Studies on Environmental and Applied Geomorphology (pp. 219-240). InTech Published online.
12. Fujisada, H., Bailey, G., Kelly, G., Hara, S., & Abrams, M., 2005. ASTER DEM performance. IEEE Transactions On Geoscience And Remote Sensing, 43(12), 2707-2714. doi: 10.1109/tgrs.2005.847924
13. Gao, J., 1998. Impact of sampling intervals on the reliability of topographic variables mapped from grid DEMs at a micro-scale. International Journal of Geographical Information Systems, 12, 875–890.
14. Gerrard, A. J. W. and Robinson, D. A., 1971. Variability of slope measurements. Transactions of the Institute of British Geographers 54, 45 –54.
15. Hu, Z., Peng, J., Hou, Y., & Shan, J., 2017. Evaluation of Recently Released Open Global Digital Elevation Models of Hubei, China. Remote Sensing, 9(3), 262. doi: 10.3390/rs9030262
16. Hudz, V. P. (Ed), Prymak, I. D., Budonyi, Yu. V., Tanchyk, S. P., 2010. Zemlerobstvo [Agriculture] (2th ed.). Kyiv: Center for educational literature. (in Ukrainian).
17. Ivanov, Ye.A., Andreichuk, Yu.M., Kovalchuk, I.P., 2014. Dosvid heoinformatsiinoho kartohrafuvannia i modeliuvannia stanu pryrodno-heospodarskykh system hirnychopromyslovykh i postmaininhovykh terytorii. [Experience of geoinformation mapping and modeling of the state of the natural-economic systems of mining and industrial and postmining territories]. Proc. International scientific and practical conference «Integration of geospatial data in natural resources research», Kyiv: CK Comprint, 69 – 72. (in Ukrainian).
18. Kienzle, S., 2004. The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Trans. GIS, 8, 83–111.
19. Mondal, A., Khare, D., Kundu, S., Mukherjee, S., Mukhopadhyay, A., & Mondal, S., 2017. Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs. Geoscience Frontiers, 8(3), 425-436.doi: 10.1016/j.gsf.2016.03.004
20. NASA Shuttle Radar Topography Mission (SRTM) Version 3.0 Global 1 arc second Data Released over Asia and Australia | Earthdata. Retrieved from https://earthdata.nasa.gov/nasa-shuttleradar-topography-mission-srtm-version-3-0-global-1-arc-second-data-released-over-asiaand-australia
21. Planchon, O., & Darboux, F., 2002. A fast, simple and versatile algorithm to fill the depressions of digital elevation models. CATENA, 46(2-3), 159-176. doi: 10.1016/s0341-8162(01)00164-3
22. Postelniak, A. A., 2013. Otsiniuvannia tochnosti vysot tsyfrovykh modelei reliefu SRTM ta ASTER GDEM. [Accuracy assessment of digital elevation models SRTM and ASTER GDEM] Journal of Geodesy and Cartography, 4, 17–21. (in Ukrainian).
23. Rabus, B., Eineder, M., Roth, A., & Bamler, R., 2003. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal Of Photogrammetry And Remote Sensing, 57(4), 241-262. doi: 10.1016/s0924-2716(02)00124-7
24. Rodriguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M., Daffer, W., and Hensley, S., 2005. An Assessment of the SRTM Topographic Products. Technical Report JPL D31639. Jet Propulsion Laboratory, Pasadena, California. Retrieved from http://www2.jpl.nasa.gov/srtm/srtmBibliography.html.
25. Santillan, J., & Makinano-Santillan, M., 2016. Vertical accuracy assessment of 30-m resolution ALOS, ASTER, and SRTM global DEMs over Northeastern Mindanao, Philippines. ISPRS - International Archives Of The Photogrammetry, Remote Sensing And Spatial Information Sciences, XLI-B4, 149-156. doi: 10.5194/isprsarchives-xli-b4-149-2016
26. Smaliichuk, A.D., 2016. Otsinka tochnosti tsyfrovykh modelei vysot zasobamy heomatyky. [Accuracy assessment of digital elevation models using geomatics tools]. Scientific Notes Ternopil National Pedagogical University named after Volodymyr Hnatyuk. Series Geography, 1, 235-242. (in Ukrainian).
27. SOU 742–33739540 0010:2010. Kompleks standartiv. Baza topohrafichnykh danykh. Zahalni vymohy. [A set of standards. Topographic data base.
General requirements]. 2010. Kyiv, Ukraine: Ministry of Natural Resources of Ukraine. (in Ukrainian).
28. SRTM 90m Digital Elevation Database v4.1. Retrieved from https://cgiarcsi.community/data/srtm-90mdigital-elevation-database-v4-1/
29. Stratehiia udoskonalennia mekhanizmu upravlinnia v sferi vykorystannia ta okhorony zemel silskohospodarskoho pryznachennia derzhavnoi vlasnosti ta rozporiadzhennia nymy. [Strategy for improving the management mechanism in the sphere of use and protection of agricultural land of state ownership and disposal]. 2017.
Retrieved from http://land.gov.ua/wpcontent/uploads/2017/06/Stration.doc (in Ukrainian).
30. Svidzinska, D. V., 2014. Metody heoekolohichnykh doslidzhen: heoinformatsiinyi praktykum na osnovi vidkrytoi HIS SAGA: navchalnyi posibnyk. [Methods of geoecological research: geoinformation workshop on the basis of open GIS SAGA: textbook]. Kyiv: Logos. (in Ukrainian).
31. Svidzinska, D.V., 2014. Otsinka prydatnosti tsyfrovykh modelei vysot SRTM ta ASTER dlia tsilei hidrolohichnoho heoprostorovoho analizu. [SRTM and ASTER digital elevation models suitability assesment for the purposes of hydrological geospatial analysis]. Problems of continuous geographical education and cartography, 19, 88-92. (in Ukrainian).
32. Svitlychnyi, O. O., Plotnytskyi, S. V., 2006. Osnovy heoinformatyky: navchalnyi posibnyk. [Basics of Geoinformatics: Textbook]. Sumy: VTD «University Book». (in Ukrainian).
33. Svynko, Y., 2007. Narys pro pryrodu Ternopilskoi oblasti: heolohichne mynule, suchasnyi stan. [Essay on nature of Ternopil region: geological past, current condition]. Ternopil: Educational Book-Bogdan. (in Ukrainian).
34. Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D.B., Oimoen, M.J., Zhang, Z., Danielson, J.J., Krieger, T., Curtis, B., Haase, J., Abrams, M., Carabajal, C., 2011. ASTER global digital elevation model version 2-summary of validation results. Retrieved from http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary GDEM2 validation report final.pdf
35. Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., & Iwamoto, H., 2014. Precise Global DEM Generation by ALOS PRISM. ISPRS Annals Of Photogrammetry, Remote Sensing And Spatial Information Sciences, II-4, 71-76. doi: 10.5194/isprsannals-ii-4-71-2014
36. Zatserkovnyi, V., Rul, N., Plichko, L., Kryvoberets S., 2017. Analiz pidkhodiv shchodo stvorennia tsyfrovykh modelei reliefu. [Analysis of the approaches for creating digital elevation models]. Technical sciences and technologies, 1 (7), 87-97. (in Ukrainian).
Published
2019-04-20