Remote sensing and ground based assessment of distribution of land cover parameters inthe catchment area of Wadi el K’sob M’sila (Algeria)


Keywords: remote sensing, land cover, catchment area, physico-chemical properties, soil microflora communities

Abstract

Remote sensing methodology was applied to assess two land cover parameters (elevation and soil moisture) in the first stage.Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) was used to build a map of the water catchment basins within the Wadi El K'sob area. Relative soil moisture for the territory of the Wadi El K'sob catchment area was estimated by using the Sentinel-1/Multispectral Instrument (MSI) and Landsat-8/Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) optical multispectral data. Elevation data of the sampling points range from 398 to 1081 meters above sea level. Soil moisturevaried from 0.2 to 0.37 relative units. The effects of altitude and physico-chemical properties of soil on soil microflora communities in the catchment area of Wadi El K'sob M’sila (Algeria) were investigated in the second stage. The work presented here identified three groups of microorganisms in the soil samples collected in spring 2017from 7 locations situated in the catchment area of Wadi El K'sob M’sila (Algeria) along with 11 physico-chemical characteristics. Statistical tests showed that actinomycetes, fungi and mesophilic bacteria were positively correlated to the altitude. The results revealed that the microflora communities was very dependent on soil physico-chemical characteristics, the main parameters were relative soil moisture, texture, pH, electrical conductivity, organic carbon, organic matter, total nitrogen and available potassium. Generally, the parameters analyzed in this study, indicate a change in the soil microflora community according to the altitudinal and soil physico-chemical variations.

Author Biographies

Nadia Rebati
Ibn Khaldoun University
Nadia Bouchenafa
Ibn Khaldoun University
Karima Oulbachir
Ibn Khaldoun University
Mykhailo Svideniuk
Scientific Centre for Aerospace Research of Earth, NAS Ukraine

References

1. Aislabie, J., Deslippe, J. R., & Dymond, J., 2013.Soil microbes and their contribution to soil services. Ecosystem services in New Zealand–conditions and trends. Manaaki Whenua Press, Lincoln, New Zealand, 143-161.
2. Aubert, G., 1978. "Méthodes d'analyses des sols," Centre national de documentation pédagogique, Centre régional de documentation pédagogique de Marseille.
3. Bååth, E., Frostegård, Å., Pennanen, T., & Fritze, H., 1995. Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biology and Biochemistry27, 229-240.
4. Baize, D., 1988. "Guide des analyses courantes en pédologie," Institut national de la recherche agronomique.
5. Bakken, L. R., 1997. Culturable and nonculturable bacteria in soil. Modern Soil Microbiology, 47-61.
6. Baldrian, P., KolaIík, M., Štursová, M., Kopecký, J., Valášková, V., VJtrovský, T., ŽifKáková, L., Šnajdr, J., Rídl, J., & VlKek, L. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal 6, 248.
7. Barness, G., Zaragoza, S. R., Shmueli, I., & Steinberger, Y., 2009. Vertical distribution of a soil microbial community as affected by plant ecophysiological adaptation in a desert system. Microbial Ecology57, 36-49.
8. Bekku, Y. S., Nakatsubo, T., Kume, A., & Koizumi, H., 2004. Soil microbial biomass, respiration rate, and temperature dependence on a successional glacier foreland in Ny-Ålesund, Svalbard. Arctic, Antarctic, and Alpine Research, 395-399.
9. Bott, T., & Kaplan, L., 1985. Bacterial biomass, metabolic state, and activity in stream sediments: relation to environmental variables and multiple assay comparisons. Applied and Environmental Microbiology50, 508-522.
10. Dellal, A, 1992. Activités microbiologiques en conditions salines : en cas de quelques sols salés de la région de Relizane (Algérie). Cahiers agricultures 1, 335-340.
11. Chang, E.-H., Chen, T.-H., Tian, G., & Chiu, C.-Y., 2016. The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations. Applied Soil Ecology 98, 213-220.
12. Chapin Iii, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., & Hobbie, S. E., 2000. Consequences of changing biodiversity. Nature 405, 234.
13. Cheng, J., Jing, G., Wei, L., & Jing, Z., 2016. Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China. Ecological Engineering 97, 170-178.
14. Dang, P., Yu, X., Le, H., Liu, J., Shen, Z., & Zhao, Z., 2017. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PloS One 12, e0186501.
15. Davidson, E. A., & Janssens, I. A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165.
16. Duchaufour, P., 1997). Abrégé de pédologie. Sol, végétation, environnement. 5e éd. Paris: Masson.
17. Egamberdieva, D., Renella, G., Wirth, S., & Islam, R., 2010. Secondary salinity effects on soil microbial biomass. Biology and Fertility of Soils 46, 445-449.
18. Faoro, H., Alves, A., Souza, E., Rigo, L., Cruz, L., AlJanabi, S., Monteiro, R., Baura, V., & Pedrosa, F., 2010. Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Applied and Environmental Microbiology76, 4744-4749.
19. Fierer, N., & Jackson, R. B., 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103, 626-631.
20. Frey, S., Elliott, E., & Paustian, K., 1999. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biology and Biochemistry 31, 573-585.
21. Frey, S. D., Knorr, M., Parrent, J. L., & Simpson, R. T., 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management 196, 159-171.
22. Girvan, M. S., Bullimore, J., Pretty, J. N., Osborn, A. M., & Ball, A. S., 2003. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and Environmental Microbiology 69, 1800-1809.
23. Griffiths, R. P., Madritch, M. D., & Swanson, A. K., 2009. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. Forest Ecology and Management 257, 1-7.
24. Guo-Mei, J., Zhang, P.-D., Gang, W., Jing, C., JingCheng, H., & Huang, Y.-P., 2010. Relationship between microbial community and soil properties during natural succession of abandoned agricultural land.Pedosphere 20, 352-360.
25. Hadiab, M., 1998. "Aménagementet protection des milieux naturels dans la cuvette centrale du Hodna (Algérie)," atelier national de reproduction des thèses, paris.(Ph.D. thesis)
26. Hesse, P. R., & Hesse, P., 1971. A Textbook of Soil Chemical Analysis.
27. J Morin, P., and McGradyGSteed, J., 2004. Biodiversity and ecosystem functioning in aquatic microbial systems: a new analysis of temporal variation and species richnessGpredictability relations. Oikos 104, 458-466.
28. Kanazawa, S., & Filip, Z., 1986. Distribution of microorganisms, total biomass, and enzyme activities in different particles of brown soil. Microbial Ecology 12, 205-215.
29. Kaštovská, K., Elster, J., Stibal, M., & ŠantrMKková, H., 2005. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microbial Ecology 50, 396.
30. Kaštovská, K., Stibal, M., Šabacká, M., Lerná, B., ŠantrMKková, H., & Elster, J., 2007. Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biology 30, 277-287.
31. Kidanemariam, A., Gebrekidan, H., Mamo, T., & Kibret, K., 2012. Impact of altitude and land use type on some physical and chemical properties of acidic soils in Tsegede Highlands, Northern Ethiopia. Open Journal of Soil Science 2, 223.
32. Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N., 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry 40, 2407-2415.
33. Lipson, D. A., 2006. Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiology Ecology59, 418-427.
34. Margesin, R., Jud, M., Tscherko, D., & Schinner, F., 2008. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiology Ecology 67, 208-218.
35. Mathieu, C., Pieltain, F., & Jeanroy, E., 2003. "Analyse chimique des sols: Méthodes choisies," Tec & doc.
36. Meimei, C., Baodong, C., & Marschner, P., 2008. Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture. Journal of Environmental Sciences20, 1231-1237.
37. Mimeche, F., 2014. Ecologie du barbeau de l’Algérie, Luciobarbus callensis (Valenciennes, 1842) (Pisces : Cyprinidae) dans le barrage d’EL K’sob (M’Sila). Ecole Nationale Supérieure Agronomique – EL- Harrach Alger. (Ph.D. thesis)
38. Philippot, L., Raaijmakers, J. M., Lemanceau, P., &Van Der Putten, W. H., 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology 11, 789.
39. Postma, J., Schilder, M. T., Bloem, J., & van LeeuwenHaagsma, W. K., 2008. Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biology and Biochemistry 40, 2394-2406.
40. Qiu, L., Zhang, X., Cheng, J., & Yin, X., 2010. Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China. Plant and Soil 332, 207-217.
41. Ramirez, K. S., Craine, J. M., & Fierer, N., 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology 18, 1918-1927.
42. Richards, L. A., 1954 . "Diagnosis and improvement of saline and alkali soil," Washington D. C.
43. Rietz, D., & Haynes, R., 2003. Effects of irrigationinduced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry 35, 845-854.
44. S Giller, P., Hillebrand, H., Berninger, U. G., O Gessner, M., Hawkins, S., Inchausti, P., Inglis, C., Leslie, H., Malmqvist, B., & T Monaghan, M., 2004. Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos 104, 423-436.
45. Sakhatsky O. I., StankevichS. A., 2007. Do mozhlyvostei otsiniuvannia zvolozhenosti zemnoho pokryttia za bahatospektralnymy kosmichnymy zobrazhenniamy optychnoho diapazonu na prykladi terytorii Ukrainy [On the possibilities of land cover moisture parameters determination using multispectral optical satellite images data on the by the example of Ukraine]. Reports of the National Academy of Sciences of Ukraine 11, 122-128 (in Ukrainian)
46. Saravanakumar, K., Anburaj, R., Gomathi, V., & Kathiresan, K., 2016. Ecology of soil microbes in a tropical mangrove forest of south east coast of India. Biocatalysis and Agricultural Biotechnology 8, 73-85.
47. Schimel, J., & Schaeffer, S. M., 2012. Microbial control over carbon cycling in soil. Frontiers in Microbiology 3, 348.
48. Sessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H., & Kandeler, E., 2001. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Applied and Environmental Microbiology 67, 4215-4224.
49. Stankevich S. A., Pylypchuk V. V., Lubskyi M. S., Krylova H. B., 2016. Accuracy assessment of the temperature of artificial and natural earth’s surfaces determining by infrared satellite imagery. Space Science and Technology, vol.22, 24, 20-28 (in Ukrainian)
50. Tan, X., Chang, S. X., & Kabzems, R., 2005. Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study. Forest Ecology and Management 217, 158-170.
51. Taylor, L. A., Arthur, M. A., & Yanai, R. D., 1999. Forest floor microbial biomass across a northern hardwood successional sequence. Soil Biology and Biochemistry 31, 431-439.
52. Topatoglu, E., AY, N., Altun, L., & Serdar, B., 2016. Effect of altitude and aspect on various wood properties ofOriental beech (Fagus orientalis Lipsky) wood. Turkish Journal of Agriculture and Forestry 40, 397-406.
53. Uchida, M., Nakatsubo, T., Kasai, Y., Nakane, K., & Horikoshi, T., 2000. Altitudinal differences in organic matter mass loss and fungal biomass in a subalpine coniferous forest, Mt. Fuji, Japan. Arctic, Antarctic, and Alpine Research, 262-269.
54. Väisänen, R., Roberts, M., Garland, J., Frey, S., & Dawson, L., 2005. Physiological and molecular characterisation of microbial communities associated with different water-stable aggregate size classes. Soil Biology and Biochemistry 37, 2007-2016.
55. Wang, H., Yang, S.-h., Yang, J.-p., Lv, Y.-m., Zhao, X., & Pang, J.-l., 2014. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards. Journal of Zhejiang University SCIENCE B 15, 953-965.
56. Williams, M. A., & Rice, C. W., 2007. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community. Applied Soil Ecology 35, 535-545.
57. Yang, Y., Wu, L., Lin, Q., Yuan, M., Xu, D., Yu, H., Hu, Y., Duan, J., Li, X., & He, Z., 2013. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology 19, 637-648.
58. Zhang, Y., Li, Y., Wang, L., Tang, Y., Chen, J., Hu, Y., Fu, X., & Le, Y., 2013. Soil microbiological variability under different successional stages of the Chongming Dongtan wetland and its effect on soil organic carbon storage. Ecological Engineering 52, 308-315.
Published
2019-01-08