Kinetics of hematite to magnetite reduction by biomass

  • V. P. Ponomar M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NASU
  • N. O. Dudchenko M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NASU
  • A. B. Brik M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NASU
Keywords: hematite, magnetite, kinetics of transformation, X-Ray diffraction, magnetometry, thermomagnetic analysis


Kinetics of hematite to magnetite reduction by starch at relatively low temperatures (300–600 °С) during the time interval of 5–30 min has been investigated using the method of thermomagnetic analysis. The transformation process was accompanied by permanent measurement of magnetization of the sample. The rate of sample heating/cooling was 65°/min. It was shown that the starting temperature of the reaction was approximately 350 °C. Curie temperature of transformed samples was 555 °С corresponding to the Curie temperature of bulk pure magnetite (580 °C). According to the X-Ray diffraction data, the initial sample consisted of hematite. This sample, annealed at 400 °С, did not demonstrate magnetite reflexes; nonetheless, the magnetization of this sample increased considerably, suggesting the magnetite formation in the sample. This disagreement can be explained by a higher sensitivity of thermomagnetic analysis in comparison to X-Ray diffraction method. The samples, annealed at 500 and 600 °С, showed magnetite reflexes in addition to hematite reflexes. The raise of annealing time increased saturation magnetization of the transformed samples. The sharp increase in magnetization during the initial 5 minutes of reduction was observed for the samples annealed at 500 and 600 °C. Only a small increase in magnetization was observed for the time interval of 10–30 min for all temperatures. Saturation magnetization of transformed samples increased tenfold up to 35 А·m2/kg for the samples acquired at 600 °С. The kinetics parameters of the process were calculated using the obtained data of saturation magnetization. Two stages of the reduction reaction were determined: the first stage is the fast formation and the growth of magnetite nuclei on the surface of hematite; and second stage is the reaction interface progress towards the core of the hematite grain. The rate constants for each temperature and activation energy equal to 32 kJ/mol were calculated for the second stage of the reaction. Obtained data are essential for solving applied and theoretical problems of modern mineralogy. 

Author Biographies

V. P. Ponomar, M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NASU
M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NASU
N. O. Dudchenko, M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NASU
M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NASU
A. B. Brik, M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NASU
M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NASU


Baliarsingh S.K., Mishra B., 2008. Kinetics of iron ore reduction by coal and charcoal: a thesis submitted in partial fulfillment of the requirements for the degree of bachelor of technology in metallurgical and materials engineering, Rourkela, 35.
Corbetta M., Manenti F., Soares F., Ravaghi-Ardebili Z., Ranzi E., Pirola C., Buzzi-Ferraris G., Pierucci S., 2014. Mathematical modelling of coal and biomass gasification: comparison on the syngas H2/CO ratio under different operating conditions. Comput. Aided Chem. Eng. 33, 1668–1673. doi:10.1016/B978-0-444-63455-9.50113-6
Dudchenko N.O., Ponomar V.P., 2015. Phase transformation of goethite into magnetite by reducing with carbohydrates. Dnipropetr. Univ. Bull. Ser.: Geol.. geogr. 23(1), 24-32. doi:10.15421/111504
Gaviria J.P., Bohe A., Pasquevichc A., Pasquevicha D.M., 2007. Hematite to magnetite reduction monitored by Mossbauer spectroscopy and X-ray diffraction. Physica B, 389, 198–201. doi:10.1016/j.physb.2006.07.056
Janishpol's'kij V.V. Alєksejcev Ju.O., Dudchenko N.O., Vіrko S.V., Ponomarenko O.M., Brik O.B., 2014. Pristrіj dlja viznachennja temperaturi Kjurі ta іdentifіkacії magnіtnih mіneralіv v rudah ta magnіtnih materіalah. [Facility for Curie temperature determination and identification the magnetic minerals in the ores and magnetic materials]. Patent UA № 94514.
Kudrjavceva G.P., 1988. Ferrimagnetism prirodnyh oksidov. [Ferrimagnetism of iron oxides]. M.: Nedra, 232 (in Russian).
Mohan D., Sarswat A., Sik Ok Y., Pittman Jr C.U., 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresour. Technol. 160, 191-202. doi:10.1016/j.biortech.2014.01.120
Monazam E.R. Breault R.W., Siriwardane R., 2014. Reduction of hematite (Fe2O3) to wustite (FeO) by carbon monoxide (CO) for chemical looping combustion. Chem. Eng. J. 242, 204–210. doi:10.1016/j.cej.2013.12.040
Mondal K. Lorethova H., Hippo E., Wiltowski T., Lalvani S.B., 2004. Reduction of iron oxide in carbon monoxide atmosphere—reaction controlled kinetics. Fuel Process. Technol. 86, 33–47. doi:10.1016/j.fuproc.2003.12.009
Moon I.J. Rhee C.H., Min D.J., 1998. Reduction of hematite compacts by CO-H2 gas mixtures. Steel Research Int. 69, 302–306. doi:10.1002/srin.199805555
Moon I.J. Rhee C.H., 1997. Reduction of hematite compacts by H2–CO gas mixtures. Proc. TMS Annual Meeting, 9-13 Feb. 1997, Orlando, FL, Minerals Metals and Materials Society, Warrendale, PA, USA, 649.
Mousa E. Wang C., Riesbeck J., Larsson M., 2016. Biomass applications in iron and steel industry: An overview of challenges and opportunities. Renew. Sustainable Energy Rev. 65, 1247–1266. doi:10.1016/j.rser.2016.07.061
Pang J. Guo P., Zhao P., Cao C., Zhang D., 2009. Influence of size of hematite powder on its reduction kinetics by H2 at low temperature, J. Iron Steel Res. Int. № l6(5), 07–11. doi:10.1016/S1006-706X(10)60002-7
Pineau A. Kanari N., Gaballah I., 2006. Kinetics of reduction of iron oxides by H2: Pt. I: Low temperature reduction of hematite. Thermochim. Acta. 447, 89–100. doi:10.1016/j.tca.2005.10.004
Ponomar V.P. Grechanovskij A.E., Brik A.B., Jushin A.A., Ljutoev V.P., Savchenko T.S., 2015. Termomagnitnye issledovanija preobrazovanija gematita v magnetit s ispol'zovaniem krahmala. [Thermomagnetic investigations of hematite transformations to magnetite with the use of starch]. Mіneralog. zhurnal.(Ukraine), 37(2), 37– 45 (in Russian).
Ponomar V.P. Dudchenko N.O., Brik O.B., 2016. Termomagnіtnі vlastivostі gematitu ta magnetitu zalіzistih kvarcitіv Krivorіz'kogo basejnu. [Thermomagnetic properties of hematite and magnetite of iron quartzite of Kryvbas]. Precedence of X internatioinal scientific conference «Problems of theoretical and applied mineralogy, geology, and metallogenic of mining regions ", Kryvyi Rih, Ukraine, 24-26 November, 129–135 (in Ukrainian).
Ponomarenko O.M. Brik O.B., Dudchenko N.O., Janishpol's'kij V.V., Alєksejcev Ju.O., 2014. Pristrіj dlja ekspertnogo vimіrjuvannja namagnіchenostі rud ta magnіtnih materіalіv [Facility for rapid magnetization measurment of ores and magnetic materials]. Patent UA № 94163.
Sastri M. Viswanath R., Viswanathan B., 1982. Studies on the reduction of iron-oxide with hydrogen. Int. J. Hydrogen Energy, 7, 951–955. doi:10.1016/0360-3199(82)90163-x
Seaton C.E. Foster J.S., Velasco J., 1983. Reduction kinetics of hematite and magnetite pellets containing coal char. Transactions ISIJ, 23, 490 – 496. doi:10.2355/isijinternational1966.23.490
Shimokawabe M. Furuichi R., Ishii T., 1979. Influence of the preparation history of alpha-Fe2O3 on its reactivity for hydrogen reduction. Thermochim. Acta, 28, 287–305. doi:10.1016/0040-6031(79)85133-3
Tiernan M.J. Barnes P.A., Parkes G.M.B., 2001. Reduction of iron oxide catalysts: the investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques. J. Phys. Chem. B, 105, 220–228. doi:10.1021/jp003189
Usenko A.E. Pan'kov V.V., Sobeskij A.S., 2013. Tverdofaznyj sintez magnetita iz gematita v vosstanovitel'noj atmosfere parov jetilovogo spirta. [Solid-phase synthesis of magnetite from hematite in a reducing atmosphere of ethanol vapor]. Vestnik BGU, 3(2), 16–21 (in Russian).
Vest A., 1988. Himija tverdogo tela. Teorija i prilozhenija: V 2-h ch. Ch. 1: Per. s angl. [Solid state chemistry and its application]. M.: Mir, 547 (in Russian).
How to Cite
Ponomar, V., Dudchenko, N., & Brik, A. (2017). Kinetics of hematite to magnetite reduction by biomass. Journal of Geology, Geography and Geoecology, 25(1), 53-62.