Geochemical internal variations of Salem Dolerite dykes from Southern Granulite Terrane: Implications of petrogenetic processes in the dyke conduits
Keywords:
major dykes, compositional changes, compatible, incompatible, intrusion, differentiation process
Abstract
Salem dolerites were collected across the dyke from various parts of the studied area for identifying the differentiation process of magma in the conduits from the compositional profile. The thick dolerites show NNW-SSE, NE-SW, and NW-SE trends. The studied dyke shows systematic composition increasing and decreasing in the chilled margin and centre of the dyke as the texture and concentration of plagioclase and pyroxene increase. Chilled margins show microcrystalline to intersertal, and the centre of the dyke show sub ophitic textures. The compatible oxide MgO, element Ni and the Mg number (100Mg/(Mg+FeT)) increased and the incompatible oxides TiO2, P2O5, and elements Zr decreased from the chilled margin to the centre of the dyke in the compositional profile show reverse fractionation trends (opposite to fractional crystallization) in the studied dykes except for Seeliyampatti dyke. The Seeliyampatti dolerites show opposite compositional variations indicating a normal fractionation trend from the other dykes of the study area. The reverse fractional trends in dykes resulting in the progressive increase of cumulate minerals growth against the dyke wall called the «cumulate process», however, the normal fractional trend in Seeliyampatti resulting in the progressive increase of more evolved magma successively removes the early chilled margin and fills the thick dyke with less compatible and more incompatible components toward the centre of the dyke. Although the normal trend in thick dyke considered the exceptional liquid process of magma differentiation that was formed more like fractional crystallization. Factor analysis also supports the differentiation process of magma. The first factor accounts total variance of 57.68% showing the positively loaded incompatible element and negatively loaded compatible elements.References
1. Bas, M.L., Maitre, R.L., Streckeisen, A., Zanettin, B. and IUGS. (1986). Subcommission on the Systematics of Igneous Rocks., A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of petrology, 27(3), 745-750.
2. Brouxel, M. (1991). Geochemical consequences of flow differentiation in a multiple injection dike (Trinity ophiolite, N. California). Lithos, 26(3-4), 245-252.
3. Chistyakova, S.Y. and Latypov, R. (2009a). Fine-scale chemical zonation in small mafic dykes, Kestiö Island, SW Finland. Geological Magazine, 146(4), 485-496.
4. Chistyakova, S.Y. and Latypov, R. (2010). On the development of internal chemical zonation in small mafic dykes. Geological Magazine, 147(1), 1-12.
5. Chistyakova, S.Y. and Latypov, R.M. (2011a). Primary and secondary chemical zonation in mafic dykes: a case study of the Vochelambina dolerite dyke, Kola Peninsula, Russia. In Dyke Swarms: Keys for Geodynamic Interpretation (pp. 583-601). Springer, Berlin, Heidelberg.
6. Chistyakova, S.Y. and Latypov, R.M. (2011b). Small Dacite Dyke, Southern Urals, Russia: Rapidy Quenched Liq- uid or Fine-Grained Cumulate? (Еd. RK Srivastava). Dyke Swarms: Keys for Geodynamic Interpretation.
7. Chistyakova, S.Y. and Latypov, R. (2012). Magma differentiation and crystallization in basaltic conduits by two competing petrogenetic processes. Lithos, 148, 142-161.
8. Clark, C., Collins, A.S., Kinny, P.D., Timms, N.E. and Chetty, TRK. (2009). SHRIMP U–Pb age constraints on the age of charnockite magmatism and metamorphism in the Salem Block, southern India. Gondwana Res. 16, 27– 36.
9. Coleman, D.S., Bartley, J.M., Glazner, A.F., and Pardue, M.J. (2012). Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow-crustal differentiation?. Geosphere, 8(6), 1568-1587.
10. Collins, A. S., Clark, C., Sajeev, K., Santosh, M., Kelsey, D. E., and Hand, M. (2007). Passage through India: The Mozambique Ocean suture, high pressure granulites and the Palghat-Cauvery shear zone system .Terra Nova, 19(2), 141-147.
11. Collins, A.S., Clark, C. and Plavsa, D. (2014). Peninsular India in Gondwana: the tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts. Gondwana Res. 25, 190–203.
12. Dash, J.K., Pradhan, S.K., Bhutani, R., Balakrishnan, S., Chandrasekaran, G. and Basavaiah, N. (2013). Paleomagnetism of ca. 2.3 Ga mafic dyke swarms in the northeastern Southern Granulite Terrain, India: con- straints on the position and extent of Dharwar craton in the Paleoproterozoic. Precambrian Res. 228, 164– 176.
13. Devaraju, T.C., Hannu Huhma, Sudhakara, T.L., Kaukonen, R.J. and Alapieti, T.T. (2007). Petrology, geochemistry, model Sm-Nd ages and petrogenesis of the granitoids of the northern block of Western Dharwar Craton. Jour. Geol. Soc. India, v.70, 889-911.
14. Drury, S.A. and Holt, R.W. (1980). The tectonic framework of the south Indian Craton, a reconnaissance involving Land sat imagery. Tectonophysics, v.65, T-1-T15.
15. Ernst R. E and Srivastava R K., (2008). India’s place in the Proterozoic world: Constraints from the Large Igneous Province (LIP) record; In: Indian Dykes(eds) Srivas- tava R K, Ch Sivaji and Chalapathi Rao N V, Narosa Publishing House, New Delhi, 41–56.
16. Ghosh, J.G., Wit, M.J.D. and Zartman, R.E. (2004). Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tecton- ics 23, 297– 319.
17. Gotelli, N. J., and Ellison, A. M. (2004). A primer of ecological statistics (Vol. 1). Sunderland: Sinauer Associates.
18. Halama, R., Waight, T. and Markl, G. (2002). Geochemical and isotopic zoning patterns of plagioclase megacrysts in gabbroic dykes from the Gardar Province, South Greenland: implications for crystallisation processes in anorthositic magmas. Contributions to Mineralogy and Petrology, 144(1), 109-127.
19. Hoek, J.D, (1995). Dyke propagation and arrest in Proterozoic tholeiitic dyke swarms, Vestfold Hills, East Antarctica, Phys. chemestry dykes, 79–93.
20. Jayabalan, M., Umamaheswaran, G. and Suresh, A. (2012). Petrology and geochemistry of dolerite dykes of Dharmapuri and Salem Districts of Tamil Nadu. Journal of Applied Geochemistry, 14(1), 52-68.
21. Kakkassery, A.I., Haritha, A., and Rajesh, V.J. (2022). Serpentine-magnesite Association of Salem Ultramafic Complex, Southern India: A Potential Analogue for Mars. Planetary and Space Science, 221, 105528.
22. Kalsbeek, F., and Taylor, P.N. (1985). Age and origin of early Proterozoic dolerite dykes in South- West Greenland. Contributions to Mineralogy and Petrology, 89(4), 307-316.
23. Kalsbeek, F., and Taylor, P.N. (1986). Chemical and isotopic homogeneity of a 400 km long basic dyke in central West Greenland. Contributions to Mineralogy and Petrology, 93(4), 439-448.
24. Kavanagh, J.L. and Sparks, R.S.J. (2011). Insights of dyke emplacement mechanics from detailed 3d dyke thickness datasets, J. Geol. Soc., 168(4), 965–978.
25. Kretz, R., Hartree, R., Garrett, D., and Cermignani, C. (1985). Petrology of the Grenville swarm of gabbro dikes, Canadian Precambrian Shield. Canadian Journal of Earth Sciences, 22(1), 53- 71.
26. Latypov, R. (2009). Testing the validity of the petrological hypothesis ‘no phenocrysts, no post- emplacement differentiation’. Journal of Petrology, 50(6), 1047-1069.
27. Maaløe, S. (1998). Shape of ascending feeder dikes, and ascent modes of magma, J. Volcanol. Geotherm. Res., 81(3-4), 207–214.
28. Middlemost, E.A. (1975). The basalt clan. Earth-science reviews, 11(4), 337-364.
29. Newcombe, M.E., Fabbrizio, A., Zhang, Y., Ma, C., Le Voyer, M., Guan, Y., Eiler J.M., Saal A.E. and Stolper, E. M. (2014). Chemical zonation in olivine-hosted melt inclusions. Contributions to Mineralogy and Petrology, 168(1), 1-26.
30. Pivarunas, A.F., Meert, J.G., Pandit, M.K., and Sinha, A. (2019). Paleomagnetism and geochronology of mafic dykes from the Southern Granulite Terrane, India: Ex- panding the Dharwar craton southward. Tectonophysics, 760, 4-22.
31. Praharaj, P., and Rekha, S. (2022). Tectonometamorphic evolution of the Trivandrum and Southern Madurai blocks in the Southern Granulite Terrane, south India: correlation with south-central Madagascar. Geological Magazine, 159(9), 1569-1600.
32. Radhakrishna, T., Krishnendu, N. R., and Balasubramonian, G. (2013). Palaeoproterozoic Indian shield in the global continental assembly: Evidence from the pa- laeomagnetism of mafic dyke swarms. Earth-Science Reviews, 126, 370-389.
33. Rasmussen, J. (1978). Schematic 3-D model of a dyke in the Faeroese basalt plateau. Bull. Geol. Soc, 27, 79- 84.
34. Roberts, N. M., and Santosh, M., (2018). Capturing the Mesoarchean emergence of continental crust in the Coorg Block, southern India. Geophysical Research Letters, 45(15), 7444-7453.
35. Santosh, M., Hu, C.-N., He, X.-F., Li, S.-S., Tsunogae, T., Shaji, E. and Indu, G., (2017). Neoproterozoic arc magmatism in the southern Madurai Block, India: Sub- duction, relamination, continental outbuilding, and the growth of Gondwana. Gondwana Research, 45: 1–42.
36. Santosh, M., Maruyama, S. and Sato, K. (2009). Anatomy of a Cambrian suture in Gondwana: Pacifictype orogeny in southern India?. Gondwana research, 16(2), 321-341.
37. Santosh, M., Xiao, W.J., Tsunogae, T., Chetty, T.R.K. and Yellappa, T. (2012). The Neoproterozoic subduction complex in southern India: SIMS zircon U–Pb ages and implications for Gondwana assembly. Precambrian Research, 192, 190-208.
38. Santosh, M., Yang, Q.Y, Shaji, E., Ram Mohan, M., Tsunogae, T. and Satyanarayanan, M. (2016). Oldest rocks from Peninsular India: Evidence for Hadean to Neoar- chean crustal evolution, Gondwana Research, Volume 29, Pages 105-135.
39. Santosh, M., Yang, Q.Y., Shaji, E., Tsunogae, T., Mohan, M.R. and Satyanarayanan, M., (2015). An exotic Mesoarchean 739 microcontinent: the Coorg Block, southern India. Gondwana Research, 27(1): 165–195.
40. Sato, K., Santosh, M., Tsunogae, T., Chetty, T.R.K. and Hirata, T. (2011). Subduction–accretion– collision history along the Gondwana suture in southern India: a laser ablation ICP-MS study of zircon chronology. Journal of Asian Earth Sciences, 40(1), 162-171.
41. Southwick, D. L. and Day, W.C. (1983). Geology and petrology of Proterozoic mafic dikes, north- central Minnesota and western Ontario. Canadian Journal of Earth Sciences, 20(4), 622-638.
42. Srivastava, R.K., Jayananda, M., Gautam, G.C., Gireesh, V. and Samal, A.K. (2014). Geochemistry of an ENE– WSW to NE–SW trending∼ 2.37 Ga mafic dyke swarm of the eastern Dharwar craton, India: Does it represent a single magmatic event?. Geochemistry, 74(2), 251-265.
43. Srivastava, R.K., Söderlund, U., Ernst, R.E. and Gautam, G.C. (2021). A ca. 2.25 Ga mafic dyke swarm discovered in the Bastar craton, Central India: Implications for a wide- spread plume-generated Large Igneous Province (LIP) in the Indian shield. Precambrian Research, 360, 106232.
44. Srivastava, R.K., Söderlund, U., Ernst, R.E., Mondal, S.K. and Samal, A.K. (2019). Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India). Precambrian Research, 329, 5-17.
45. Tappa, M.J., Coleman, D.S., Mills, R.D. and Samperton, K.M. (2011). The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico. Geochem- istry, Geophysics, Geosystems, 12(10).
46. Ubide, T., Arranz, E., Lago, M., Galé, C., and Larrea, P. (2012). The influence of crystal settling on the compositional zoning of a thin lamprophyre sill: A multi-method approach. Lithos, 132, 37-49.
47. Venkatesh, A.S., Rao, G.P., Rao, N.P. and Bhalla, M.S. (1987). Palaeomagnetic and geochemical studies on dolerite dykes from Tamil Nadu, India. Precambrian Research, 34, 291-310.
48. Xia, L. and Li, X. (2019). Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Research, 65, 43-67.
49. Yellappa, T. (2021). High Ti-bearing Gabbros from Chalk Hills of Salem, Southern India: A Cogenetic Origin during Neoproterozoic Alaskan-type Evolution. Journal of the Geological Society of India, 97(1), 21-34.
2. Brouxel, M. (1991). Geochemical consequences of flow differentiation in a multiple injection dike (Trinity ophiolite, N. California). Lithos, 26(3-4), 245-252.
3. Chistyakova, S.Y. and Latypov, R. (2009a). Fine-scale chemical zonation in small mafic dykes, Kestiö Island, SW Finland. Geological Magazine, 146(4), 485-496.
4. Chistyakova, S.Y. and Latypov, R. (2010). On the development of internal chemical zonation in small mafic dykes. Geological Magazine, 147(1), 1-12.
5. Chistyakova, S.Y. and Latypov, R.M. (2011a). Primary and secondary chemical zonation in mafic dykes: a case study of the Vochelambina dolerite dyke, Kola Peninsula, Russia. In Dyke Swarms: Keys for Geodynamic Interpretation (pp. 583-601). Springer, Berlin, Heidelberg.
6. Chistyakova, S.Y. and Latypov, R.M. (2011b). Small Dacite Dyke, Southern Urals, Russia: Rapidy Quenched Liq- uid or Fine-Grained Cumulate? (Еd. RK Srivastava). Dyke Swarms: Keys for Geodynamic Interpretation.
7. Chistyakova, S.Y. and Latypov, R. (2012). Magma differentiation and crystallization in basaltic conduits by two competing petrogenetic processes. Lithos, 148, 142-161.
8. Clark, C., Collins, A.S., Kinny, P.D., Timms, N.E. and Chetty, TRK. (2009). SHRIMP U–Pb age constraints on the age of charnockite magmatism and metamorphism in the Salem Block, southern India. Gondwana Res. 16, 27– 36.
9. Coleman, D.S., Bartley, J.M., Glazner, A.F., and Pardue, M.J. (2012). Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow-crustal differentiation?. Geosphere, 8(6), 1568-1587.
10. Collins, A. S., Clark, C., Sajeev, K., Santosh, M., Kelsey, D. E., and Hand, M. (2007). Passage through India: The Mozambique Ocean suture, high pressure granulites and the Palghat-Cauvery shear zone system .Terra Nova, 19(2), 141-147.
11. Collins, A.S., Clark, C. and Plavsa, D. (2014). Peninsular India in Gondwana: the tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts. Gondwana Res. 25, 190–203.
12. Dash, J.K., Pradhan, S.K., Bhutani, R., Balakrishnan, S., Chandrasekaran, G. and Basavaiah, N. (2013). Paleomagnetism of ca. 2.3 Ga mafic dyke swarms in the northeastern Southern Granulite Terrain, India: con- straints on the position and extent of Dharwar craton in the Paleoproterozoic. Precambrian Res. 228, 164– 176.
13. Devaraju, T.C., Hannu Huhma, Sudhakara, T.L., Kaukonen, R.J. and Alapieti, T.T. (2007). Petrology, geochemistry, model Sm-Nd ages and petrogenesis of the granitoids of the northern block of Western Dharwar Craton. Jour. Geol. Soc. India, v.70, 889-911.
14. Drury, S.A. and Holt, R.W. (1980). The tectonic framework of the south Indian Craton, a reconnaissance involving Land sat imagery. Tectonophysics, v.65, T-1-T15.
15. Ernst R. E and Srivastava R K., (2008). India’s place in the Proterozoic world: Constraints from the Large Igneous Province (LIP) record; In: Indian Dykes(eds) Srivas- tava R K, Ch Sivaji and Chalapathi Rao N V, Narosa Publishing House, New Delhi, 41–56.
16. Ghosh, J.G., Wit, M.J.D. and Zartman, R.E. (2004). Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tecton- ics 23, 297– 319.
17. Gotelli, N. J., and Ellison, A. M. (2004). A primer of ecological statistics (Vol. 1). Sunderland: Sinauer Associates.
18. Halama, R., Waight, T. and Markl, G. (2002). Geochemical and isotopic zoning patterns of plagioclase megacrysts in gabbroic dykes from the Gardar Province, South Greenland: implications for crystallisation processes in anorthositic magmas. Contributions to Mineralogy and Petrology, 144(1), 109-127.
19. Hoek, J.D, (1995). Dyke propagation and arrest in Proterozoic tholeiitic dyke swarms, Vestfold Hills, East Antarctica, Phys. chemestry dykes, 79–93.
20. Jayabalan, M., Umamaheswaran, G. and Suresh, A. (2012). Petrology and geochemistry of dolerite dykes of Dharmapuri and Salem Districts of Tamil Nadu. Journal of Applied Geochemistry, 14(1), 52-68.
21. Kakkassery, A.I., Haritha, A., and Rajesh, V.J. (2022). Serpentine-magnesite Association of Salem Ultramafic Complex, Southern India: A Potential Analogue for Mars. Planetary and Space Science, 221, 105528.
22. Kalsbeek, F., and Taylor, P.N. (1985). Age and origin of early Proterozoic dolerite dykes in South- West Greenland. Contributions to Mineralogy and Petrology, 89(4), 307-316.
23. Kalsbeek, F., and Taylor, P.N. (1986). Chemical and isotopic homogeneity of a 400 km long basic dyke in central West Greenland. Contributions to Mineralogy and Petrology, 93(4), 439-448.
24. Kavanagh, J.L. and Sparks, R.S.J. (2011). Insights of dyke emplacement mechanics from detailed 3d dyke thickness datasets, J. Geol. Soc., 168(4), 965–978.
25. Kretz, R., Hartree, R., Garrett, D., and Cermignani, C. (1985). Petrology of the Grenville swarm of gabbro dikes, Canadian Precambrian Shield. Canadian Journal of Earth Sciences, 22(1), 53- 71.
26. Latypov, R. (2009). Testing the validity of the petrological hypothesis ‘no phenocrysts, no post- emplacement differentiation’. Journal of Petrology, 50(6), 1047-1069.
27. Maaløe, S. (1998). Shape of ascending feeder dikes, and ascent modes of magma, J. Volcanol. Geotherm. Res., 81(3-4), 207–214.
28. Middlemost, E.A. (1975). The basalt clan. Earth-science reviews, 11(4), 337-364.
29. Newcombe, M.E., Fabbrizio, A., Zhang, Y., Ma, C., Le Voyer, M., Guan, Y., Eiler J.M., Saal A.E. and Stolper, E. M. (2014). Chemical zonation in olivine-hosted melt inclusions. Contributions to Mineralogy and Petrology, 168(1), 1-26.
30. Pivarunas, A.F., Meert, J.G., Pandit, M.K., and Sinha, A. (2019). Paleomagnetism and geochronology of mafic dykes from the Southern Granulite Terrane, India: Ex- panding the Dharwar craton southward. Tectonophysics, 760, 4-22.
31. Praharaj, P., and Rekha, S. (2022). Tectonometamorphic evolution of the Trivandrum and Southern Madurai blocks in the Southern Granulite Terrane, south India: correlation with south-central Madagascar. Geological Magazine, 159(9), 1569-1600.
32. Radhakrishna, T., Krishnendu, N. R., and Balasubramonian, G. (2013). Palaeoproterozoic Indian shield in the global continental assembly: Evidence from the pa- laeomagnetism of mafic dyke swarms. Earth-Science Reviews, 126, 370-389.
33. Rasmussen, J. (1978). Schematic 3-D model of a dyke in the Faeroese basalt plateau. Bull. Geol. Soc, 27, 79- 84.
34. Roberts, N. M., and Santosh, M., (2018). Capturing the Mesoarchean emergence of continental crust in the Coorg Block, southern India. Geophysical Research Letters, 45(15), 7444-7453.
35. Santosh, M., Hu, C.-N., He, X.-F., Li, S.-S., Tsunogae, T., Shaji, E. and Indu, G., (2017). Neoproterozoic arc magmatism in the southern Madurai Block, India: Sub- duction, relamination, continental outbuilding, and the growth of Gondwana. Gondwana Research, 45: 1–42.
36. Santosh, M., Maruyama, S. and Sato, K. (2009). Anatomy of a Cambrian suture in Gondwana: Pacifictype orogeny in southern India?. Gondwana research, 16(2), 321-341.
37. Santosh, M., Xiao, W.J., Tsunogae, T., Chetty, T.R.K. and Yellappa, T. (2012). The Neoproterozoic subduction complex in southern India: SIMS zircon U–Pb ages and implications for Gondwana assembly. Precambrian Research, 192, 190-208.
38. Santosh, M., Yang, Q.Y, Shaji, E., Ram Mohan, M., Tsunogae, T. and Satyanarayanan, M. (2016). Oldest rocks from Peninsular India: Evidence for Hadean to Neoar- chean crustal evolution, Gondwana Research, Volume 29, Pages 105-135.
39. Santosh, M., Yang, Q.Y., Shaji, E., Tsunogae, T., Mohan, M.R. and Satyanarayanan, M., (2015). An exotic Mesoarchean 739 microcontinent: the Coorg Block, southern India. Gondwana Research, 27(1): 165–195.
40. Sato, K., Santosh, M., Tsunogae, T., Chetty, T.R.K. and Hirata, T. (2011). Subduction–accretion– collision history along the Gondwana suture in southern India: a laser ablation ICP-MS study of zircon chronology. Journal of Asian Earth Sciences, 40(1), 162-171.
41. Southwick, D. L. and Day, W.C. (1983). Geology and petrology of Proterozoic mafic dikes, north- central Minnesota and western Ontario. Canadian Journal of Earth Sciences, 20(4), 622-638.
42. Srivastava, R.K., Jayananda, M., Gautam, G.C., Gireesh, V. and Samal, A.K. (2014). Geochemistry of an ENE– WSW to NE–SW trending∼ 2.37 Ga mafic dyke swarm of the eastern Dharwar craton, India: Does it represent a single magmatic event?. Geochemistry, 74(2), 251-265.
43. Srivastava, R.K., Söderlund, U., Ernst, R.E. and Gautam, G.C. (2021). A ca. 2.25 Ga mafic dyke swarm discovered in the Bastar craton, Central India: Implications for a wide- spread plume-generated Large Igneous Province (LIP) in the Indian shield. Precambrian Research, 360, 106232.
44. Srivastava, R.K., Söderlund, U., Ernst, R.E., Mondal, S.K. and Samal, A.K. (2019). Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India). Precambrian Research, 329, 5-17.
45. Tappa, M.J., Coleman, D.S., Mills, R.D. and Samperton, K.M. (2011). The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico. Geochem- istry, Geophysics, Geosystems, 12(10).
46. Ubide, T., Arranz, E., Lago, M., Galé, C., and Larrea, P. (2012). The influence of crystal settling on the compositional zoning of a thin lamprophyre sill: A multi-method approach. Lithos, 132, 37-49.
47. Venkatesh, A.S., Rao, G.P., Rao, N.P. and Bhalla, M.S. (1987). Palaeomagnetic and geochemical studies on dolerite dykes from Tamil Nadu, India. Precambrian Research, 34, 291-310.
48. Xia, L. and Li, X. (2019). Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Research, 65, 43-67.
49. Yellappa, T. (2021). High Ti-bearing Gabbros from Chalk Hills of Salem, Southern India: A Cogenetic Origin during Neoproterozoic Alaskan-type Evolution. Journal of the Geological Society of India, 97(1), 21-34.
Published
2023-04-11
How to Cite
Ramachandran, C., Thirunavukkarasu, A., Manobalaji, A., & Ravi, R. (2023). Geochemical internal variations of Salem Dolerite dykes from Southern Granulite Terrane: Implications of petrogenetic processes in the dyke conduits. Journal of Geology, Geography and Geoecology, 32(1), 185-200. https://doi.org/https://doi.org/10.15421/112318
Section
Статьи